63 lines
2.8 KiB
YAML
63 lines
2.8 KiB
YAML
![]() |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
||
|
# Example usage: python train.py --data GlobalWheat2020.yaml
|
||
|
# parent
|
||
|
# ├── yolov5
|
||
|
# └── datasets
|
||
|
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
||
|
|
||
|
|
||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||
|
path: ../datasets/GlobalWheat2020 # dataset root dir
|
||
|
train: # train images (relative to 'path') 3422 images
|
||
|
- images/arvalis_1
|
||
|
- images/arvalis_2
|
||
|
- images/arvalis_3
|
||
|
- images/ethz_1
|
||
|
- images/rres_1
|
||
|
- images/inrae_1
|
||
|
- images/usask_1
|
||
|
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
|
||
|
- images/ethz_1
|
||
|
test: # test images (optional) 1276 images
|
||
|
- images/utokyo_1
|
||
|
- images/utokyo_2
|
||
|
- images/nau_1
|
||
|
- images/uq_1
|
||
|
|
||
|
# Classes
|
||
|
nc: 80 # number of classes
|
||
|
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
||
|
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||
|
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
||
|
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||
|
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
||
|
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
||
|
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
||
|
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||
|
'hair drier', 'toothbrush'] # class names
|
||
|
|
||
|
|
||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||
|
download: |
|
||
|
from utils.general import download, Path
|
||
|
|
||
|
|
||
|
# Download
|
||
|
dir = Path(yaml['path']) # dataset root dir
|
||
|
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
|
||
|
download(urls, dir=dir)
|
||
|
|
||
|
# Make Directories
|
||
|
for p in 'annotations', 'images', 'labels':
|
||
|
(dir / p).mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
# Move
|
||
|
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
|
||
|
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
|
||
|
(dir / p).rename(dir / 'images' / p) # move to /images
|
||
|
f = (dir / p).with_suffix('.json') # json file
|
||
|
if f.exists():
|
||
|
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
|