614 lines
25 KiB
Python
614 lines
25 KiB
Python
import cv2
|
||
|
||
from utils import filter_rectangle, get_hd_cam_rect
|
||
|
||
print(cv2.__version__) # 4.9.0
|
||
import json
|
||
import math
|
||
import copy
|
||
import numpy as np
|
||
import time
|
||
from scipy.spatial import distance
|
||
from scipy.optimize import linear_sum_assignment
|
||
|
||
def get_params(num_param, start, end):
|
||
return copy.deepcopy(num_param[start:end+1])
|
||
|
||
def parmas_to_num(text_param):
|
||
for item in text_param:
|
||
# item['center'] = int(float(item['center']) * 1000)
|
||
item['center'] = int(float(item['center']))
|
||
item['x'] = int(float(item['x']))
|
||
item['w'] = int(item['w'])
|
||
item['h'] = int(item['h'])
|
||
return text_param
|
||
|
||
def parmas_to_text(num_param):
|
||
for item in num_param:
|
||
item['center'] = str(item['center'])
|
||
item['x'] = str(item['x'])
|
||
item['w'] = str(item['w'])
|
||
item['h'] = str(item['h'])
|
||
item['x1'] = str(item['x1'])
|
||
item['y1'] = str(item['y1'])
|
||
item['x2'] = str(item['x2'])
|
||
item['y2'] = str(item['y2'])
|
||
item['x3'] = str(item['x3'])
|
||
item['y3'] = str(item['y3'])
|
||
item['x4'] = str(item['x4'])
|
||
item['y4'] = str(item['y4'])
|
||
item['x_center'] = str(item['x_center'])
|
||
item['y_center'] = str(item['y_center'])
|
||
return num_param
|
||
|
||
def sort_params(params):
|
||
sorted_params = sorted(params, key=lambda item: (item['center'], item['x']))
|
||
return sorted_params
|
||
|
||
def print_params(sort_params):
|
||
for param in sort_params:
|
||
print(param["center"], param["x"], param["w"], param["h"])
|
||
|
||
def print_path(search_path):
|
||
for path in search_path:
|
||
print(path[0], path[1])
|
||
|
||
def search_path(sort_params):
|
||
searchPath = []
|
||
for i in range(len(sort_params) - 1):
|
||
(r, theta) = cartesian_to_polar(sort_params[i]["x"], sort_params[i]["center"],
|
||
sort_params[i + 1]["x"], sort_params[i + 1]["center"])
|
||
searchPath.append([r, theta])
|
||
return searchPath
|
||
|
||
def normalize_params_and_path(sort_params, search_path, index=0):
|
||
base = sort_params[index]["h"]
|
||
for param in sort_params:
|
||
param['center'] /= base
|
||
param['x'] /= base
|
||
param['w'] /= base
|
||
param['h'] /= base
|
||
param['w/h'] = param['w'] / param['h']
|
||
if search_path != None:
|
||
for path in search_path:
|
||
path[0] /= base
|
||
# path[1] /= base
|
||
return sort_params, search_path
|
||
|
||
def read_from_json(file_path):
|
||
with open(file_path, 'r') as f:
|
||
loaded_array = json.load(f)
|
||
return loaded_array
|
||
|
||
def cartesian_to_polar(x1, y1, x2, y2):
|
||
dx = x2 - x1
|
||
dy = y2 - y1
|
||
r = math.sqrt(dx**2 + dy**2)
|
||
theta = math.atan2(dy, dx)
|
||
return r, theta
|
||
|
||
def calculate_second_point(x1, y1, r, theta_radians):
|
||
# theta_radians = math.radians(theta_degrees)
|
||
x2 = x1 + r * math.cos(theta_radians)
|
||
y2 = y1 + r * math.sin(theta_radians)
|
||
|
||
return x2, y2
|
||
|
||
def cal_c1c2c3c4(param, heigt):
|
||
'''
|
||
按照上左、上右、下右、下左的顺时针顺序.
|
||
返回的数据是转换成了以左上角为原点的坐标系下的坐标点。
|
||
'''
|
||
param['x1'] = int(param['x'] - param['w'] / 2)
|
||
param['y1'] = heigt - int(param['center'] + param['h'] / 2)
|
||
|
||
param['x2'] = int(param['x'] + param['w'] / 2)
|
||
param['y2'] = heigt - int(param['center'] + param['h'] / 2)
|
||
|
||
param['x3'] = int(param['x'] + param['w'] / 2)
|
||
param['y3'] = heigt - int(param['center'] - param['h'] / 2)
|
||
|
||
param['x4'] = int(param['x'] - param['w'] / 2)
|
||
param['y4'] = heigt - int(param['center'] - param['h'] / 2)
|
||
|
||
param['x_center'] = int((param['x1'] + param['x2']) / 2)
|
||
param['y_center'] = int((param['y1'] + param['y3']) / 2)
|
||
return param
|
||
|
||
def gen_im_from_params(params, type="lines"):
|
||
# 依据bim数据生成bim图
|
||
# type: # line points
|
||
## 确定整个bim图的长度和宽度边界
|
||
max_y = -999999 # y坐标最大值
|
||
max_y_idx = -1 # y坐标最大值的索引
|
||
max_x = -999999 # x坐标最大值
|
||
max_x_idx = -1 # x坐标最大值的索引
|
||
|
||
# 遍历,找到矩形x坐标最大值和矩形y坐标最大值
|
||
for i, param in enumerate(params):
|
||
# x中心点坐标加上宽度的一半 = 当前矩形的x最大坐标
|
||
if param["x"] + param["w"] / 2 > max_x:
|
||
# 如果是最大的x坐标就更新
|
||
max_x = param["x"] + param["w"] / 2
|
||
max_x_idx = i
|
||
# y中心点坐标加上高度的一半 = 当前矩形的y最大坐标
|
||
if param["center"] + param["h"] / 2 > max_y:
|
||
# 如果是最大的y坐标就更新
|
||
max_y = param["center"] + param["h"] / 2
|
||
max_y_idx = i
|
||
|
||
padding_value = 1000 # 内边距,避免整个bim图片贴着边缘展示
|
||
bim_width = int(max_x) + padding_value
|
||
print(f"[bim_width] ====== [{bim_width}]")
|
||
bim_height = int(max_y) + padding_value
|
||
print(f"[bim_height] ====== [{bim_height}]")
|
||
bim_channels = 3
|
||
im = np.zeros((bim_height, bim_width, bim_channels), dtype=np.uint8)
|
||
|
||
for i, param in enumerate(params):
|
||
cal_c1c2c3c4(param, bim_height)
|
||
if type == "lines":
|
||
pts = np.asarray([[param['x1'], param['y1']],
|
||
[param['x2'], param['y2']],
|
||
[param['x3'], param['y3']],
|
||
[param['x4'], param['y4']]])
|
||
cv2.polylines(im, [pts], True, (255,255,0), 8)
|
||
elif type == "points":
|
||
cv2.circle(im, (param['x1'], param['y1']), 1, 255, 20)
|
||
cv2.circle(im, (param['x2'], param['y2']), 1, 255, 20)
|
||
cv2.circle(im, (param['x3'], param['y3']), 1, 255, 20)
|
||
cv2.circle(im, (param['x4'], param['y4']), 1, 255, 20)
|
||
cv2.circle(im, (param['x'], int((param['y3'] + param['y2']) / 2 )), 1, (255,0,0), 8)
|
||
|
||
return im
|
||
|
||
|
||
"""
|
||
判断点是否在区域内部
|
||
True 在
|
||
False 不在
|
||
如果没有提供区域,不做判断,返回True
|
||
"""
|
||
def is_inside_roi(point, roi_w, roi_h):
|
||
if (roi_w != None and roi_h != None):
|
||
x = point[0]
|
||
y = point[1]
|
||
if (x <= 0 or y <= 0 or y >= roi_h or x >= roi_w ):
|
||
# 不在区域内部
|
||
return False
|
||
else:
|
||
# 在区域内部
|
||
return True
|
||
else:
|
||
# 没有提供区域,不做判断,默认返回True
|
||
return True
|
||
|
||
|
||
def gen_points_from_params(params,roi_w=None,roi_h=None):
|
||
# 依据bim数据生成bim图
|
||
# type line points
|
||
## 计算bim图长和宽
|
||
max_y = -999999
|
||
max_y_idx = -1
|
||
max_x = -999999
|
||
max_x_idx = -1
|
||
for i, param in enumerate(params):
|
||
if param["x"] + param["w"] / 2 > max_x:
|
||
max_x = param["x"] + param["w"] / 2
|
||
max_x_idx = i
|
||
if param["center"] + param["h"] / 2 > max_y:
|
||
max_y = param["center"] + param["h"] / 2
|
||
max_y_idx = i
|
||
bim_height = int(max_y)
|
||
|
||
points = []
|
||
for i, param in enumerate(params):
|
||
# 排序点 按照上左、上右、下右、下左的顺时针顺序
|
||
if (roi_w == None and roi_h == None):
|
||
cal_c1c2c3c4(param, bim_height)
|
||
# 过滤点,把在roi区域之外的点全部过滤掉.
|
||
if(is_inside_roi([param['x1'], param['y1']], roi_w, roi_h)):
|
||
points.append([param['x1'], param['y1'], i])
|
||
if(is_inside_roi([param['x2'], param['y2']], roi_w, roi_h)):
|
||
points.append([param['x2'], param['y2'], i])
|
||
if(is_inside_roi([param['x3'], param['y3']], roi_w, roi_h)):
|
||
points.append([param['x3'], param['y3'], i])
|
||
if(is_inside_roi([param['x4'], param['y4']], roi_w, roi_h)):
|
||
points.append([param['x4'], param['y4'], i])
|
||
if(is_inside_roi([param['x_center'], param['y_center']], roi_w, roi_h)):
|
||
points.append([param['x_center'], param['y_center'], i])
|
||
if (roi_w != None and roi_h != None):
|
||
print(f"[经区域过滤之后的点数一共为] ====== [{len(points)}]")
|
||
return points
|
||
|
||
def topological_similarity(adj1, adj2):
|
||
"""
|
||
计算两个拓扑结构的相似度
|
||
"""
|
||
# 计算邻接矩阵的相似度
|
||
similarity = np.sum(adj1 == adj2) / (adj1.shape[0] * adj2.shape[1])
|
||
return similarity
|
||
|
||
def find_topological_matches(points1, adj1, points2, adj2, threshold=0.8):
|
||
"""
|
||
基于拓扑结构寻找匹配点集
|
||
"""
|
||
matches = []
|
||
for i in range(len(points1)):
|
||
for j in range(len(points2)):
|
||
# 计算拓扑相似度
|
||
sim = topological_similarity(adj1[i], adj2[j])
|
||
if sim > threshold:
|
||
matches.append((i, j, sim))
|
||
# 按相似度排序
|
||
matches.sort(key=lambda x: x[2], reverse=True)
|
||
return matches
|
||
|
||
from sklearn.linear_model import RANSACRegressor
|
||
|
||
def ransac_shape_matching(points, reference_points):
|
||
model_ransac = RANSACRegressor(random_state=42)
|
||
try:
|
||
model_ransac.fit(reference_points, points[:len(reference_points)]) # 假设点数相同
|
||
except ValueError as e:
|
||
print("Error fitting the model:", e)
|
||
return []
|
||
|
||
inlier_mask = model_ransac.inlier_mask_
|
||
best_match_subset = points[inlier_mask]
|
||
|
||
return best_match_subset
|
||
|
||
def polar_to_cartesian(polar_points):
|
||
r = polar_points[:, 0]
|
||
theta = polar_points[:, 1]
|
||
x = r * np.cos(theta)
|
||
y = r * np.sin(theta)
|
||
return np.vstack((x, y)).T
|
||
|
||
def compute_shape_context(points, nbins_r=5, nbins_theta=12):
|
||
n = points.shape[0]
|
||
shape_contexts = []
|
||
r_max = np.max(distance.pdist(points))
|
||
r_edges = np.logspace(-1, np.log10(r_max), nbins_r)
|
||
theta_edges = np.linspace(-np.pi, np.pi, nbins_theta + 1)
|
||
|
||
for i in range(n):
|
||
current_point = points[i]
|
||
relative_points = points - current_point
|
||
rs = np.hypot(relative_points[:, 0], relative_points[:, 1])
|
||
thetas = np.arctan2(relative_points[:, 1], relative_points[:, 0])
|
||
H, _, _ = np.histogram2d(thetas, rs, bins=[theta_edges, r_edges])
|
||
H /= np.sum(H) + 1e-8 # 归一化
|
||
shape_contexts.append(H.flatten())
|
||
|
||
return np.array(shape_contexts)
|
||
|
||
def match_shapes(sc1, sc2):
|
||
cost_matrix = distance.cdist(sc1, sc2, metric='sqeuclidean')
|
||
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
||
return cost_matrix[row_ind, col_ind].sum()
|
||
|
||
def _sobel(image):
|
||
'''
|
||
_sobel
|
||
'''
|
||
if image.ndim > 2:
|
||
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||
# todo 增加几个参数 http://blog.csdn.net/sunny2038/article/details/9170013
|
||
_sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=1)
|
||
_sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=1)
|
||
|
||
_sobelx = np.uint8(np.absolute(_sobelx))
|
||
_sobely = np.uint8(np.absolute(_sobely))
|
||
_sobelcombine = cv2.bitwise_or(_sobelx,_sobely)
|
||
return _sobelcombine
|
||
|
||
def _findContours(image):
|
||
'''
|
||
_findContours
|
||
http://blog.csdn.net/mokeding/article/details/20153325
|
||
'''
|
||
contours, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||
return sorted(contours, key=cv2.contourArea, reverse=True)
|
||
|
||
if __name__ == "__main__":
|
||
# 读取并处理数据
|
||
data_bim = {}
|
||
data_bim["type"] = 0
|
||
data_bim["params"] = read_from_json("data_bim.json")
|
||
data_bim["point"] = []
|
||
data_bim["params"] = parmas_to_num(data_bim["params"])
|
||
|
||
data_sub = {}
|
||
data_sub["type"] = 0
|
||
data_sub["params"] = []
|
||
|
||
# 广角相机拍照照片之后左右边界的裁剪比例。
|
||
wide_cam_left_cut_rate = 0.1
|
||
wide_cam_right_cut_rate = 0.1
|
||
# 高清相机的视场矩形在广角相机里面的坐标。cv2下的图片坐标系,以左上角为坐标原点
|
||
hd_cam_x, hd_cam_y,hd_cam_w, hd_cam_h, = get_hd_cam_rect(wide_cam_left_cut_rate)
|
||
|
||
# 创建测试子集
|
||
# sub_im = cv2.imread("wide_image.png")
|
||
# sub_zero = np.zeros_like(sub_im)
|
||
# _im_gray = cv2.cvtColor(sub_im, cv2.COLOR_BGR2GRAY)
|
||
# _im_gray = cv2.GaussianBlur(_im_gray, (5, 5), 0)
|
||
# _im_edge_sobel = _sobel(_im_gray)
|
||
# _, _im_thresh = cv2.threshold(_im_edge_sobel, 5, 255, cv2.THRESH_BINARY)
|
||
# cnts = _findContours(_im_thresh)
|
||
# for contour in cnts:
|
||
# x, y, w, h = cv2.boundingRect(contour)
|
||
# cv2.rectangle(sub_zero, (x, y), (x + w, y + h), (255, 255, 255), -1)
|
||
# _im_edge_sobel = _sobel(sub_zero)
|
||
# _, _im_thresh = cv2.threshold(_im_edge_sobel, 5, 255, cv2.THRESH_BINARY)
|
||
# cnts = _findContours(_im_thresh)
|
||
original_rectangle = read_from_json("data_sub/test_1/data_sub.json")
|
||
# 过滤矩形
|
||
# cnts 过滤之后的矩形
|
||
# sub_im 裁剪之后的图像
|
||
cnts,sub_im = filter_rectangle("data_sub/test_1/wide_image.png", original_rectangle,wide_cam_left_cut_rate,wide_cam_right_cut_rate)
|
||
sub_zero = np.zeros_like(sub_im)
|
||
for contour in cnts:
|
||
# x, y, w, h = cv2.boundingRect(contour)
|
||
x = contour["x"]
|
||
y = contour["y"]
|
||
w = contour["width"]
|
||
h = contour["height"]
|
||
|
||
# 由于定位框大小大于预埋件大小,因此这里需要做缩放处理
|
||
kh = int(h * 0.01) # roi1
|
||
kw = int(w * 0.01) # roi1
|
||
x += int(kw)
|
||
y += int(kh)
|
||
w -= int(kw)
|
||
h -= int(kh)
|
||
param = {}
|
||
param["x1"] = x
|
||
param["y1"] = y
|
||
param["x2"] = x + w
|
||
param["y2"] = y
|
||
param["x3"] = x + w
|
||
param["y3"] = y + h
|
||
param["x4"] = x
|
||
param["y4"] = y + h
|
||
param['x_center'] = int((param['x1'] + param['x2']) / 2)
|
||
param['y_center'] = int((param['y1'] + param['y3']) / 2)
|
||
param["w"] = param["x2"] - param["x1"]
|
||
param["h"] = param["y3"] - param["y1"]
|
||
param["x"] = int((param["x1"] + param["x2"]) / 2)
|
||
param['center'] = sub_im.shape[0] - int((param["y1"] + param["y3"]) / 2)
|
||
data_sub["params"].append(param)
|
||
cv2.rectangle(sub_zero, (x, y), (x + w, y + h), (0, 255, 0), 1)
|
||
bim_im = gen_im_from_params(data_bim["params"])
|
||
# cv2.namedWindow("bim", cv2.WINDOW_NORMAL)
|
||
# cv2.imshow("bim", bim_im)
|
||
cv2.imwrite("bim_im.png", bim_im)
|
||
# cv2.waitKey(0)
|
||
cv2.imshow("sub_zero", sub_zero)
|
||
# cv2.waitKey(0)
|
||
|
||
# data_sub = {}
|
||
# data_sub["type"] = 0
|
||
# data_sub["params"] = get_params(data_bim["params"], 1,8)
|
||
# data_sub["point"] = []
|
||
# data_sub["params"][0]["center"] += 20
|
||
# data_sub["params"][0]["x"] += 13
|
||
# data_sub["params"][0]["w"] += 40
|
||
|
||
##################### 开始计算 ####################
|
||
# 1、计算sub的搜索路径
|
||
## 1.1 排序 y升序,x升序
|
||
data_sub["params"] = sort_params(data_sub["params"])
|
||
_sub_sort_params = data_sub["params"]
|
||
start_time = time.time()
|
||
|
||
# sub_roi_height = int(max_y) #????
|
||
# sub_roi_width = int(max_x) #????
|
||
sub_roi_height = sub_im.shape[0]
|
||
sub_roi_width = sub_im.shape[1]
|
||
sub_roi_params_select_id = -1
|
||
sub_roi_w_base_len = 0 # 选中预埋件的宽度作为基础长度
|
||
sub_roi_divide_w_h = 1
|
||
polar_origin_x = 0 # 极坐标原点 x
|
||
polar_origin_y = 0 # 极坐标原点 y
|
||
start_x = 0
|
||
start_y = 0
|
||
## 1.2 选择一块完整的预埋件
|
||
for i, param in enumerate(_sub_sort_params):
|
||
if 0 < param['x1'] and param['x2'] < sub_roi_width \
|
||
and 0 < param['y1'] and param['y3'] < sub_roi_height:
|
||
sub_roi_params_select_id = i
|
||
sub_roi_w_base_len = param['x2'] - param['x1']
|
||
sub_roi_divide_w_h = param['w'] / param['h']
|
||
polar_origin_x = int(param['x1']) # 当前选择的预埋件的左上角 x 坐标
|
||
polar_origin_y = int(param['y1']) # 当前选择的预埋件的左上角 y 坐标
|
||
break
|
||
if sub_roi_params_select_id == -1 or sub_roi_w_base_len == 0 :
|
||
print("[ERROR]\t 拍摄的图像中没有完整的预埋件信息\n")
|
||
assert(0)
|
||
## 1.2.2 将其他预埋件相对于它的极坐标进行填写
|
||
for i, param in enumerate(_sub_sort_params):
|
||
if i != sub_roi_params_select_id:
|
||
param['r'], param['theta'] = cartesian_to_polar(_sub_sort_params[sub_roi_params_select_id]['x_center'],
|
||
_sub_sort_params[sub_roi_params_select_id]['y_center'],
|
||
param['x_center'],param['y_center'])
|
||
|
||
## 1.3计算所有点到该预埋件左上点的,点个数,平均极半径 和 平均极角度
|
||
sum_r, sum_theta = 0.0,0
|
||
count = 0
|
||
# 测试,画出所有的pts
|
||
# for i, p in enumerate(_sub_sort_params):
|
||
# # 画点
|
||
# cv2.circle(sub_im, (p["x_center"], p["y_center"]), 2, (0, 255, 255), -1)
|
||
# cv2.imshow("_sub_sort_params", sub_im)
|
||
# cv2.waitKey(0)
|
||
pts = gen_points_from_params(_sub_sort_params,sub_roi_width,sub_roi_height)
|
||
# # 测试,画出所有的pts
|
||
for i, p in enumerate(pts):
|
||
# 画点
|
||
cv2.circle(sub_im, (p[0], p[1]), 2, (0, 255, 255), -1)
|
||
# 写编号
|
||
cv2.putText(sub_im, str(i), (p[0], p[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
|
||
cv2.rectangle(sub_im,(hd_cam_x,hd_cam_y),(hd_cam_x+hd_cam_w,hd_cam_y+hd_cam_h), (0, 255, 0), 4)
|
||
cv2.imshow("sub_im_points", sub_im)
|
||
# cv2.waitKey(0)
|
||
polar_list = []
|
||
for i, pt in enumerate(pts):
|
||
r, theta = cartesian_to_polar(polar_origin_x, polar_origin_y, pt[0], pt[1])
|
||
sum_r += r
|
||
sum_theta += theta
|
||
count += 1
|
||
polar_list.append([r, theta])
|
||
sum_r /= count * sub_roi_w_base_len
|
||
sum_theta /= count
|
||
print(f"[所有点到该预埋件左上点的个数] ====== [{count}]")
|
||
print(f"[所有点到该预埋件左上点的平均极半径] ====== [{sum_r}]")
|
||
print(f"[所有点到该预埋件左上点的平均极角] ====== [{sum_theta}]")
|
||
|
||
# 初始化候选预埋件
|
||
candi_params = []
|
||
for i, param in enumerate(data_bim["params"]):
|
||
temp_div_w_h = param['w'] / param['h']
|
||
if temp_div_w_h / sub_roi_divide_w_h < 1.5 and temp_div_w_h / sub_roi_divide_w_h > 0.66:
|
||
candi_params.append(param)
|
||
print(f"形状筛选后还剩下:{len(candi_params)} 个候选, w / h = {sub_roi_divide_w_h}")
|
||
|
||
rst_params = []
|
||
bim_all_pts = gen_points_from_params(data_bim["params"])
|
||
bim_im = gen_im_from_params(data_bim["params"])
|
||
# sub_im = gen_im_from_params(data_sub["params"])# 需要读取
|
||
min_match_score = 999999
|
||
for i, param in enumerate(candi_params):
|
||
tmp_roi_w_base_len = param['x2'] - param['x1']
|
||
scale = tmp_roi_w_base_len / sub_roi_w_base_len
|
||
tmp_roi_width = int(scale * sub_roi_width)
|
||
tmp_roi_height = int(scale * sub_roi_height)
|
||
# 相对于bim图的坐标
|
||
tmp_roi_start_x = int(param['x1'] - scale * polar_origin_x)
|
||
tmp_roi_end_x = tmp_roi_start_x + tmp_roi_width
|
||
|
||
tmp_roi_start_y = int(param['y1'] - scale * polar_origin_y)
|
||
tmp_roi_end_y = tmp_roi_start_y + tmp_roi_height
|
||
|
||
# 计算高清矩形,在bim上面的坐标。相当于被scale一起放大了
|
||
hd_cam_x_bim = int(scale * hd_cam_x + tmp_roi_start_x)
|
||
hd_cam_y_bim = int(scale * hd_cam_y + tmp_roi_start_y)
|
||
hd_cam_w_bim = int(scale * hd_cam_w)
|
||
hd_cam_h_bim = int(scale * hd_cam_h)
|
||
|
||
|
||
tmp_roi_conners = [[tmp_roi_start_x, tmp_roi_start_y],
|
||
[tmp_roi_end_x, tmp_roi_start_y],
|
||
[tmp_roi_end_x, tmp_roi_end_y],
|
||
[tmp_roi_start_x, tmp_roi_end_y]]
|
||
tmp_sum_r, tmp_sum_theta = 0.0, 0
|
||
tmp_count = 0
|
||
tmp_polar_list = []
|
||
# 这里需要把选中的预埋件也提取出来
|
||
param['effective_points'] = []
|
||
for j, pt in enumerate(bim_all_pts):
|
||
if cv2.pointPolygonTest(np.asarray(tmp_roi_conners), (pt[0],pt[1]), False) > 0:
|
||
r, theta = cartesian_to_polar(param['x1'], param['y1'], pt[0], pt[1])
|
||
tmp_sum_r += r
|
||
tmp_sum_theta += theta
|
||
tmp_count += 1
|
||
tmp_polar_list.append([r, theta])
|
||
# 搜集有效点,以供后续继续处理
|
||
param['effective_points'].append(pt)
|
||
tmp_sum_r /= tmp_count * tmp_roi_w_base_len
|
||
tmp_sum_theta /= tmp_count
|
||
|
||
# 预埋件数量相差 30%,则不进行计算
|
||
# if tmp_count / count > 1.3 or tmp_count / count < 0.77: continue
|
||
|
||
if abs(tmp_count - count) == 0: score = 0.5
|
||
elif abs(tmp_count - count) <= 10: score = 0.4
|
||
elif abs(tmp_count - count) <= 20: score = 0.3
|
||
elif abs(tmp_count - count) <= 30: score = 0.2
|
||
else: score = 0.0
|
||
|
||
# else: score = (1 / abs(tmp_count - count) ) * 0.7
|
||
score += (1 - abs(tmp_sum_r - sum_r) / sub_roi_width) * 0.25
|
||
score += (1 - abs(tmp_sum_theta - sum_theta) / 3.14) * 0.35
|
||
|
||
print("score=======", str(score))
|
||
if score > 0.6: #????
|
||
cartesian_points1 = polar_to_cartesian(np.asarray(tmp_polar_list)) # bim上的坐标
|
||
cartesian_points2 = polar_to_cartesian(np.asarray(polar_list)) # sub上的坐标
|
||
sc1 = compute_shape_context(cartesian_points1)
|
||
sc2 = compute_shape_context(cartesian_points2)
|
||
match_score = match_shapes(sc1, sc2)
|
||
print("score>0.6")
|
||
print(f"[score] ====== [{score}]")
|
||
print(f"[match_score] ====== [{match_score}]")
|
||
print(f"[tmp_count] ====== [{tmp_count}]")
|
||
print(f"[tmp_sum_r] ====== [{tmp_sum_r}]")
|
||
print(f"[tmp_sum_theta] ====== [{tmp_sum_theta}]")
|
||
if match_score < 5.0: #????
|
||
param["start_point"] = (tmp_roi_start_x, tmp_roi_start_y)
|
||
param["end_point"] = (tmp_roi_end_x, tmp_roi_end_y)
|
||
param["score"] = (score, tmp_count, tmp_sum_r*tmp_roi_w_base_len, tmp_sum_theta)
|
||
param['match_score'] = match_score
|
||
# 高清相机的矩形数据
|
||
param['hd_cam_x_bim'] = hd_cam_x_bim
|
||
param['hd_cam_y_bim'] = hd_cam_y_bim
|
||
param['hd_cam_w_bim'] = hd_cam_w_bim
|
||
param['hd_cam_h_bim'] = hd_cam_h_bim
|
||
if min_match_score > match_score:
|
||
min_match_score = match_score
|
||
print(f"[start_point] ====== [{param["start_point"]}]")
|
||
print(f"[end_point] ====== [{param["end_point"]}]")
|
||
rst_params.append(param)
|
||
|
||
|
||
max_score = -99999
|
||
max_index = -1
|
||
for i, param in enumerate(rst_params):
|
||
score = param["score"]
|
||
match_score = param["match_score"]
|
||
if abs(score[0] / match_score) > max_score:
|
||
max_score = abs(score[0] / match_score)
|
||
max_index = i
|
||
rst_p = rst_params[max_index]
|
||
bim_im = cv2.rectangle(bim_im,rst_p["start_point"], rst_p["end_point"], 100 * (i + 1), 50)
|
||
# 画出高清相机矩形框
|
||
bim_im = cv2.rectangle(bim_im, (rst_p["hd_cam_x_bim"], rst_p["hd_cam_y_bim"]),(rst_p["hd_cam_x_bim"] + rst_p["hd_cam_w_bim"], rst_p["hd_cam_y_bim"] + rst_p["hd_cam_h_bim"],), (0, 0, 255), 40)
|
||
# # 预埋件匹配
|
||
# for i, param in enumerate(rst_params):
|
||
# score = param["score"]
|
||
# match_score = param["match_score"]
|
||
# print(f"[match_score] ====== [{match_score}]")
|
||
#
|
||
# id = param["code"]
|
||
#
|
||
# if min_match_score == match_score or match_score < 5.0: #????
|
||
# # if True:
|
||
# index_list = []
|
||
# for j in range(len(param['effective_points'])):
|
||
# pt = param['effective_points'][j]
|
||
# if pt[2] not in index_list:
|
||
# index_list.append(param['effective_points'][j][2])
|
||
# # for i, param in enumerate(_sub_sort_params):
|
||
# # param[]
|
||
# print(f"起始预埋件ID:{id},置信度为:{score[0]},点数量:{score[1]},平均长度为:{score[2]},平均角度为:{score[3]}")
|
||
# print(f"match_sscore为:{match_score}")
|
||
# print(f"[start_point] ====== [{param["start_point"]}]")
|
||
# print(f"[end_point] ====== [{param["end_point"]}]")
|
||
#
|
||
# bim_im = cv2.rectangle(bim_im, param["start_point"], param["end_point"], 100 * (i + 1), 50)
|
||
|
||
elapsed_time = time.time() - start_time
|
||
print(f"Execution time: {elapsed_time:.4f} seconds")
|
||
img_matches = cv2.resize(bim_im, (int(bim_im.shape[1]/6), int(bim_im.shape[0]/6)))
|
||
# sub_im = cv2.resize(sub_im, (int(sub_im.shape[1]/10), int(sub_im.shape[0]/10)))
|
||
cv2.imshow("2", img_matches)
|
||
# cnts的矩形画在sub_im 上
|
||
# for i in range(len(cnts)):
|
||
# p = cnts[i]
|
||
# cv2.rectangle(sub_im, (p['x'], p['y']), (p['x']+p['width'],p['y']+p['height']), (0, 0, 255), 2)
|
||
# # 写编号
|
||
# cv2.putText(sub_im, str(i), (p['x'], p['y']), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||
# cv2.imshow("sub_im_after_filter", sub_im)
|
||
cv2.waitKey(0) |