95 lines
3.5 KiB
Python
95 lines
3.5 KiB
Python
import json
|
||
import logging
|
||
|
||
import cv2
|
||
|
||
|
||
"""
|
||
根据裁剪之后的图片,每个点的坐标需要重新计算,以新的图片的宽高作为坐标系
|
||
"""
|
||
def re_cal_point(point,offset):
|
||
# 相当于所有的x坐标向左平移了offset个距离
|
||
point['x'] = point['x'] - offset
|
||
|
||
|
||
|
||
"""
|
||
过滤矩形
|
||
1 高度过大的不要
|
||
2 整个矩形全部身体都在裁剪区域之外的不要
|
||
|
||
返回值:
|
||
1 过滤之后的矩形
|
||
2 裁剪之后的图片
|
||
"""
|
||
def filter_rectangle(image_path, points):
|
||
# 高度过大矩形过滤参数
|
||
max_height_rate = 0.5 # 矩形高度占整个画面高度的最大比例,如果超过该比例,则认为是无效矩形
|
||
|
||
# 裁剪参数
|
||
left_x_cut_rate=0.1 # 左边界的裁剪比例,从左边开始裁剪百分之多少
|
||
right_x_cut_rate=0.1# 右边界的裁剪比例,从右边开始裁剪百分之多少
|
||
image = cv2.imread(image_path)
|
||
image_height = image.shape[0] # 获取图片高度
|
||
image_width = image.shape[1] # 获取图片宽度
|
||
image_x_min = int(image_width * left_x_cut_rate) # 左边界的裁剪点
|
||
image_x_max = int(image_width * (1 - right_x_cut_rate)) # 右边界的裁剪点
|
||
|
||
#开始过滤矩形
|
||
bad_point_index = []
|
||
print(f'开始过滤矩形,原有矩形数为{len(points)}')
|
||
for index in range(len(points)):
|
||
point = points[index]
|
||
|
||
# 高度过大过滤
|
||
if point['height'] > image_height * max_height_rate:
|
||
bad_point_index.append(index)
|
||
continue
|
||
|
||
# x坐标范围过滤,整个矩形全部身体都在裁剪区域之外的不要
|
||
x_min = point['x'] # 矩形四个矩形坐标中x的最小值
|
||
x_max = point['x'] + point['width'] # 矩形四个矩形坐标中x的最大值
|
||
# 如果矩形x的 最大值 小于 左边界,去除这个矩形
|
||
if x_max < image_x_min:
|
||
bad_point_index.append(index)
|
||
continue
|
||
# 如果矩形x的 最小值 大于 右边界,去除这个矩形
|
||
if x_min > image_x_max:
|
||
bad_point_index.append(index)
|
||
continue
|
||
|
||
# 过滤,只保留有效矩形
|
||
filtered_points = []
|
||
for i, point in enumerate(points):
|
||
# 如果当前矩形的索引在bad_point_index中,则去除这个矩形
|
||
if i not in bad_point_index:
|
||
# 重新计算点的坐标
|
||
re_cal_point(point,image_x_min)
|
||
# 塞入结果
|
||
filtered_points.append(point)
|
||
print(f'过滤矩形结束,过滤之后的矩形数为{len(filtered_points)}')
|
||
|
||
# 图片裁剪
|
||
# 裁剪图片 (height方向不变,宽度方向裁剪)
|
||
cropped_image = image[:, image_x_min:image_x_max]
|
||
# 展示
|
||
# cv2.imshow("cropped_image", cropped_image)
|
||
# cv2.imshow("image", image)
|
||
# for i in range(len(filtered_points)):
|
||
# p = filtered_points[i]
|
||
# cv2.rectangle(cropped_image, (p['x'], p['y']), (p['x'] + p['width'], p['y'] + p['height']), (0, 0, 255), 2)
|
||
# # 写编号
|
||
# cv2.putText(cropped_image, str(i), (p['x'], p['y']), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||
# cv2.imshow("cropped_image_draw", cropped_image)
|
||
# cv2.waitKey(0)
|
||
return filtered_points, cropped_image
|
||
|
||
|
||
|
||
# 测试代码
|
||
# def read_from_json(file_path):
|
||
# with open(file_path, 'r') as f:
|
||
# loaded_array = json.load(f)
|
||
# return loaded_array
|
||
# cnts = read_from_json("data_sub/test_1/data_sub.json")
|
||
# filter_rectangle("data_sub/test_1/wide_image.png",cnts) |