ss928_framework/ss928sdk/include/ot_math.h

319 lines
8.9 KiB
C
Raw Normal View History

2024-12-16 13:31:45 +08:00
/*
Copyright (c), 2001-2022, Shenshu Tech. Co., Ltd.
*/
#ifndef __OT_MATH_H__
#define __OT_MATH_H__
#include "ot_type.h"
#ifdef __cplusplus
#if __cplusplus
extern "C" {
#endif
#endif /* __cplusplus */
/*
* ABS(x) absolute value of x
* SIGN(x) sign of x
* CMP(x,y) 0 if x==y; 1 if x>y; -1 if x<y
*/
#define ABS(x) ((x) >= 0 ? (x) : (-(x)))
#define _SIGN(x) ((x) >= 0 ? 1 : (-1))
#define CMP(x, y) (((x) == (y)) ? 0 : (((x) > (y)) ? 1 : (-1)))
/*
* MAX2(x,y) maximum of x and y
* MIN2(x,y) minimum of x and y
* MAX3(x,y,z) maximum of x, y and z
* MIN3(x,y,z) minimum of x, y and z
*/
#define MAX2(x, y) ((x) > (y) ? (x) : (y))
#define MIN2(x, y) ((x) < (y) ? (x) : (y))
#define MAX3(x, y, z) ((x) > (y) ? MAX2(x, z) : MAX2(y, z))
#define MIN3(x, y, z) ((x) < (y) ? MIN2(x, z) : MIN2(y, z))
/*
* CLIP3(x,min,max) clip x within [min,max]
* value_between(x,min.max) True if x is between [min,max] inclusively.
*/
#define clip_min(x, min) (((x) >= (min)) ? (x) : (min))
#define clip3(x, min, max) ((x) < (min) ? (min) : ((x) > (max) ? (max) : (x)))
#define clip_max(x, max) ((x) > (max) ? (max) : (x))
#define value_between(x, min, max) (((x) >= (min)) && ((x) <= (max)))
/*
* MULTI_OF_2_POWER(x,a) whether x is multiple of a(a must be power of 2)
* OT_ALIGN_DOWN(x,a) floor x to multiple of a(a must be power of 2)
* OT_ALIGN_UP(x, a) align x to multiple of a
*
* Example:
* ALIGN UP, OT_ALIGN_UP(5,4) = 8
* ALIGN DOWN, OT_ALIGN_DOWN(5,4) = 4
*/
#define MULTI_OF_2_POWER(x, a) (!((x) & ((a) - 1)))
#define OT_CEILING(x, a) (((x) + (a)-1) / (a))
#define OT_ALIGN_UP(x, a) ((((x) + ((a) - 1)) / (a)) * (a))
#define OT_ALIGN_DOWN(x, a) (((x) / (a)) * (a))
#define OT_DIV_UP(x, a) (((x) + ((a) - 1)) / (a))
/*
* FRACTION32(de,nu) fraction: nu(minator) / de(nominator).
* NUMERATOR32(x) of x(x is fraction)
* DENOMINATOR32(x) Denominator of x(x is fraction)
* represent fraction in 32 bit. LSB 16 is numerator, MSB 16 is denominator
* It is integer if denominator is 0.
*/
#define FRACTION32(de, nu) (((de) << 16) | (nu))
#define NUMERATOR32(x) ((x) & 0xffff)
#define DENOMINATOR32(x) ((x) >> 16)
/*
* RGB(r,g,b) assemble the r,g,b to 24bit color
* RGB_R(c) get RED from 24bit color
* RGB_G(c) get GREEN from 24bit color
* RGB_B(c) get BLUE from 24bit color
*/
#define RGB(r, g, b) ((((r) & 0xff) << 16) | (((g) & 0xff) << 8) | ((b) & 0xff))
#define RGB_R(c) (((c) & 0xff0000) >> 16)
#define RGB_G(c) (((c) & 0xff00) >> 8)
#define RGB_B(c) ((c) & 0xff)
/*
* YUV(y,u,v) assemble the y,u,v to 30bit color
* YUV_Y(c) get Y from 30bit color
* YUV_U(c) get U from 30bit color
* YUV_V(c) get V from 30bit color
*/
#define YUV(y, u, v) ((((y) & 0x03ff) << 20) | (((u) & 0x03ff) << 10) | ((v) & 0x03ff))
#define YUV_Y(c) (((c) & 0x3ff00000) >> 20)
#define YUV_U(c) (((c) & 0x000ffc00) >> 10)
#define YUV_V(c) ((c) & 0x000003ff)
/*
* YUV_8BIT(y,u,v) assemble the y,u,v to 24bit color
* YUV_8BIT_Y(c) get Y from 24bit color
* YUV_8BIT_U(c) get U from 24bit color
* YUV_8BIT_V(c) get V from 24bit color
*/
#define YUV_8BIT(y, u, v) ((((y) & 0xff) << 16) | (((u) & 0xff) << 8) | ((v) & 0xff))
#define YUV_8BIT_Y(c) (((c) & 0xff0000) >> 16)
#define YUV_8BIT_U(c) (((c) & 0xff00) >> 8)
#define YUV_8BIT_V(c) ((c) & 0xff)
#define ot_usleep(usec) \
do { \
usleep(usec); \
} while (0)
/*
* Get the span between two unsigned number, such as
* SPAN(td_u32, 100, 200) is 200 - 100 = 100
* SPAN(td_u32, 200, 100) is 0xFFFFFFFF - 200 + 100
* SPAN(td_u64, 200, 100) is 0xFFFFFFFFFFFFFFFF - 200 + 100
*/
#define SPAN(type, begin, end) \
({ \
type b = (begin); \
type e = (end); \
(type)((b >= e) ? (b - e) : (b + ((~((type)0)) - e))); \
})
/*
* ENDIAN32(x,y) little endian <---> big endian
* IS_LITTLE_END() whether the system is little end mode
*/
#define ENDIAN32(x) \
(((x) << 24) | \
(((x) & 0x0000ff00) << 8) | \
(((x) & 0x00ff0000) >> 8) | \
(((x) >> 24) & 0x000000ff))
/*
* ENDIAN16(x,y) little endian <---> big endian
* IS_LITTLE_END() whether the system is little end mode
*/
#define ENDIAN16(x) ((((x) << 8) & 0xff00) | (((x) >> 8) & 255))
__inline static td_bool is_little_end(void)
{
union end_test_u {
td_char test[4];
td_u32 test_full;
} end_test;
end_test.test[0] = 0x01;
end_test.test[1] = 0x02;
end_test.test[2] = 0x03;
end_test.test[3] = 0x04;
return (end_test.test_full > 0x01020304) ? (TD_TRUE) : (TD_FALSE);
}
#define address_out_32bit(addr, len) ((addr >= 0x100000000) || ((addr + len) >= 0x100000000))
/*
* rgb_to_yc(r, g, b, *y, *u, *u) convert r,g,b to y,u,v
* rgb_to_yuv(rgb) convert rgb to yuv
* rgbfull to yuv601limit
*/
__inline static td_void rgb_to_yc(td_u16 r, td_u16 g, td_u16 b, td_u16 *y, td_u16 *cb, td_u16 *cr)
{
/* Y */
*y = (td_u16)((((r * 66 + g * 129 + b * 25) >> 8) + 16) << 2);
/* cb */
*cb = (td_u16)(((((b * 112 - r * 38) - g * 74) >> 8) + 128) << 2);
/* cr */
*cr = (td_u16)(((((r * 112 - g * 94) - b * 18) >> 8) + 128) << 2);
}
__inline static td_u32 rgb_to_yuv(td_u32 rgb)
{
td_u16 y, u, v;
rgb_to_yc(RGB_R(rgb), RGB_G(rgb), RGB_B(rgb), &y, &u, &v);
return YUV(y, u, v);
}
/* rgbfull to yuv601full */
__inline static td_void rgb_to_yc_full(td_u16 r, td_u16 g, td_u16 b, td_u16 *y, td_u16 *cb, td_u16 *cr)
{
td_u16 y_tmp, cb_tmp, cr_tmp;
y_tmp = (td_u16)(((r * 76 + g * 150 + b * 29) >> 8) * 4);
cb_tmp = (td_u16)(clip_min(((((b * 128 - r * 43) - g * 84) >> 8) + 128), 0) * 4);
cr_tmp = (td_u16)(clip_min(((((r * 128 - g * 107) - b * 20) >> 8) + 128), 0) * 4);
*y = MAX2(MIN2(y_tmp, 1023), 0);
*cb = MAX2(MIN2(cb_tmp, 1023), 0);
*cr = MAX2(MIN2(cr_tmp, 1023), 0);
}
__inline static td_u32 rgb_to_yuv_full(td_u32 rgb)
{
td_u16 y, u, v;
rgb_to_yc_full(RGB_R(rgb), RGB_G(rgb), RGB_B(rgb), &y, &u, &v);
return YUV(y, u, v);
}
/*
* rgb_to_yc_8bit(r, g, b, *y, *u, *u) convert r,g,b to y,u,v
* rgb_to_yuv_8bit(rgb) convert rgb to yuv
* rgbfull to yuv601limit
*/
__inline static td_void rgb_to_yc_8bit(td_u8 r, td_u8 g, td_u8 b, td_u8 *y, td_u8 *cb, td_u8 *cr)
{
/* Y */
*y = (td_u8)(((r * 66 + g * 129 + b * 25) >> 8) + 16);
/* cb */
*cb = (td_u8)((((b * 112 - r * 38) - g * 74) >> 8) + 128);
/* cr */
*cr = (td_u8)((((r * 112 - g * 94) - b * 18) >> 8) + 128);
}
__inline static td_u32 rgb_to_yuv_8bit(td_u32 rgb)
{
td_u8 y, u, v;
rgb_to_yc_8bit(RGB_R(rgb), RGB_G(rgb), RGB_B(rgb), &y, &u, &v);
return YUV_8BIT(y, u, v);
}
/* rgbfull to yuv601full */
__inline static td_void rgb_to_yc_full_8bit(td_u8 r, td_u8 g, td_u8 b, td_u8 *y, td_u8 *cb, td_u8 *cr)
{
td_s16 y_tmp, cb_tmp, cr_tmp;
y_tmp = (r * 76 + g * 150 + b * 29) >> 8;
cb_tmp = (((b * 128 - r * 43) - g * 84) >> 8) + 128;
cr_tmp = (((r * 128 - g * 107) - b * 20) >> 8) + 128;
*y = MAX2(MIN2(y_tmp, 255), 0);
*cb = MAX2(MIN2(cb_tmp, 255), 0);
*cr = MAX2(MIN2(cr_tmp, 255), 0);
}
__inline static td_u32 rgb2_yuv_full_8_bit(td_u32 rgb)
{
td_u8 y, u, v;
rgb_to_yc_full_8bit(RGB_R(rgb), RGB_G(rgb), RGB_B(rgb), &y, &u, &v);
return YUV_8BIT(y, u, v);
}
/*
* fps_control using sample:
* fps_ctrl g_fps_ctrl;
*
* take 12 frame uniform in 25.
* usage: init_fps(&g_fps_ctrl, 25, 12);
*
* {
* if(fps_control(&g_fps_ctrl)) printf("yes, this frame should be token");
* }
*/
typedef struct {
td_u32 full_fps; /* full frame rate */
td_u32 target_fps; /* target frame rate */
td_u32 frame_key; /* update key frame */
} fps_ctrl;
__inline static td_void init_fps(fps_ctrl *frame_ctrl, td_u32 full_fps, td_u32 tag_fps)
{
frame_ctrl->full_fps = full_fps;
frame_ctrl->target_fps = tag_fps;
frame_ctrl->frame_key = 0;
}
__inline static td_bool do_fps_ctrl(fps_ctrl *frame_ctrl)
{
td_bool ret = TD_FALSE;
frame_ctrl->frame_key += frame_ctrl->target_fps;
if (frame_ctrl->frame_key >= frame_ctrl->full_fps) {
frame_ctrl->frame_key -= frame_ctrl->full_fps;
ret = TD_TRUE;
}
return ret;
}
__inline static td_u32 get_low_addr(td_phys_addr_t phys_addr)
{
return (td_u32)phys_addr;
}
#ifdef CONFIG_PHYS_ADDR_BIT_WIDTH_64
__inline static td_u32 get_high_addr(td_phys_addr_t phys_addr)
{
return (td_u32)(phys_addr >> 32); /* 32bit low addr */
}
#else
__inline static td_u32 get_high_addr(td_phys_addr_t phys_addr)
{
return 0;
}
#endif
#ifdef __cplusplus
#if __cplusplus
}
#endif
#endif /* __cplusplus */
#endif /* __OT_MATH_H__ */