calibration_tools_v1.0/lidar_driver/include/open3d/utility/Optional.h
2025-02-20 10:45:17 +08:00

943 lines
29 KiB
C++

// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2023 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
// Copyright (C) 2011 - 2012 Andrzej Krzemienski.
//
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The idea and interface is based on Boost.Optional library
// authored by Fernando Luis Cacciola Carballal
//
// From https://github.com/akrzemi1/Optional
//
// C10
// - Move to `c10` namespace.
// - Remove macro use in line 478 because the nvcc device compiler cannot handle
// it.
// - revise constructor logic so that it is consistent with c++ 17 standard
// documented here in (8):
// https://en.cppreference.com/w/cpp/utility/optional/optional, and could be
// able to support initialization of optionals from convertible type U, also
// remove two old constructors optional(const T&) and optional(T&&) as it could
// be handled by the template<U=T> case with default template argument.
// - `constexpr struct in_place_t {} in_place{}` is moved to
// `c10/util/in_place.h`, so that it can also be used in `c10/util/variant.h`.
// - Remove special cases for pre-c++14 compilers to make code simpler
//
//
// Open3D
// - Namespace change: open3d::utility::optional
#pragma once
#include <cassert>
#include <functional>
#include <initializer_list>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#define TR2_OPTIONAL_REQUIRES(...) \
typename std::enable_if<__VA_ARGS__::value, bool>::type = false
namespace open3d {
namespace utility {
struct in_place_t {
explicit in_place_t() = default;
};
constexpr in_place_t in_place{};
// 20.5.4, optional for object types
template <class T>
class optional;
// 20.5.5, optional for lvalue reference types
template <class T>
class optional<T&>;
// workaround: std utility functions aren't constexpr yet
template <class T>
inline constexpr T&& constexpr_forward(
typename std::remove_reference<T>::type& t) noexcept {
return static_cast<T&&>(t);
}
template <class T>
inline constexpr T&& constexpr_forward(
typename std::remove_reference<T>::type&& t) noexcept {
static_assert(!std::is_lvalue_reference<T>::value, "!!");
return static_cast<T&&>(t);
}
template <class T>
inline constexpr typename std::remove_reference<T>::type&& constexpr_move(
T&& t) noexcept {
return static_cast<typename std::remove_reference<T>::type&&>(t);
}
#if defined NDEBUG
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
#else
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) \
((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
#endif
#if defined(__CUDA_ARCH__)
#define TR2_OPTIONAL_HOST_CONSTEXPR
#else
#define TR2_OPTIONAL_HOST_CONSTEXPR constexpr
#endif
namespace detail_ {
// VS doesn't handle constexpr well, so we need to skip these stuff.
#if (defined _MSC_VER)
template <typename T>
T* static_addressof(T& ref) {
return std::addressof(ref);
}
#else
// static_addressof: a constexpr version of addressof
template <typename T>
struct has_overloaded_addressof {
template <class X>
constexpr static bool has_overload(...) {
return false;
}
template <class X, size_t S = sizeof(std::declval<X&>().operator&())>
constexpr static bool has_overload(bool) {
return true;
}
constexpr static bool value = has_overload<T>(true);
};
template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)>
constexpr T* static_addressof(T& ref) {
return &ref;
}
template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)>
T* static_addressof(T& ref) {
return std::addressof(ref);
}
#endif
// the call to convert<A>(b) has return type A and converts b to type A iff b
// decltype(b) is implicitly convertible to A
template <class U>
constexpr U convert(U v) {
return v;
}
} // namespace detail_
constexpr struct trivial_init_t {
} trivial_init{};
// 20.5.7, Disengaged state indicator
struct nullopt_t {
struct init {};
constexpr explicit nullopt_t(init) {}
};
constexpr nullopt_t nullopt{nullopt_t::init()};
// 20.5.8, class bad_optional_access
class bad_optional_access : public std::logic_error {
public:
explicit bad_optional_access(const std::string& what_arg)
: logic_error{what_arg} {}
explicit bad_optional_access(const char* what_arg)
: logic_error{what_arg} {}
};
template <class T>
union storage_t {
unsigned char dummy_;
T value_;
constexpr storage_t(trivial_init_t) noexcept : dummy_(){};
template <class... Args>
constexpr storage_t(Args&&... args)
: value_(constexpr_forward<Args>(args)...) {}
~storage_t() {}
};
template <class T>
union constexpr_storage_t {
unsigned char dummy_;
T value_;
constexpr constexpr_storage_t(trivial_init_t) noexcept : dummy_(){};
template <class... Args>
constexpr constexpr_storage_t(Args&&... args)
: value_(constexpr_forward<Args>(args)...) {}
~constexpr_storage_t() = default;
};
template <class T>
struct optional_base {
bool init_;
storage_t<T> storage_;
constexpr optional_base() noexcept : init_(false), storage_(trivial_init){};
explicit constexpr optional_base(const T& v) : init_(true), storage_(v) {}
explicit constexpr optional_base(T&& v)
: init_(true), storage_(constexpr_move(v)) {}
template <class... Args>
explicit optional_base(in_place_t, Args&&... args)
: init_(true), storage_(constexpr_forward<Args>(args)...) {}
template <class U,
class... Args,
TR2_OPTIONAL_REQUIRES(
std::is_constructible<T, std::initializer_list<U>>)>
explicit optional_base(in_place_t,
std::initializer_list<U> il,
Args&&... args)
: init_(true), storage_(il, std::forward<Args>(args)...) {}
~optional_base() {
if (init_) storage_.value_.T::~T();
}
};
template <class T>
struct constexpr_optional_base {
bool init_;
constexpr_storage_t<T> storage_;
constexpr constexpr_optional_base() noexcept
: init_(false), storage_(trivial_init){};
explicit constexpr constexpr_optional_base(const T& v)
: init_(true), storage_(v) {}
explicit constexpr constexpr_optional_base(T&& v)
: init_(true), storage_(constexpr_move(v)) {}
template <class... Args>
explicit constexpr constexpr_optional_base(in_place_t, Args&&... args)
: init_(true), storage_(constexpr_forward<Args>(args)...) {}
template <class U,
class... Args,
TR2_OPTIONAL_REQUIRES(
std::is_constructible<T, std::initializer_list<U>>)>
constexpr explicit constexpr_optional_base(in_place_t,
std::initializer_list<U> il,
Args&&... args)
: init_(true), storage_(il, std::forward<Args>(args)...) {}
~constexpr_optional_base() = default;
};
template <class T>
using OptionalBase = typename std::conditional<
std::is_trivially_destructible<T>::value, // if possible
constexpr_optional_base<typename std::remove_const<
T>::type>, // use base with trivial destructor
optional_base<typename std::remove_const<T>::type>>::type;
template <class T>
class optional : private OptionalBase<T> {
template <class U> // re-declaration for nvcc on Windows.
using OptionalBase = typename std::conditional<
std::is_trivially_destructible<U>::value, // if possible
constexpr_optional_base<typename std::remove_const<
U>::type>, // use base with trivial destructor
optional_base<typename std::remove_const<U>::type>>::type;
static_assert(!std::is_same<typename std::decay<T>::type, nullopt_t>::value,
"bad T");
static_assert(
!std::is_same<typename std::decay<T>::type, in_place_t>::value,
"bad T");
constexpr bool initialized() const noexcept {
return OptionalBase<T>::init_;
}
typename std::remove_const<T>::type* dataptr() {
return std::addressof(OptionalBase<T>::storage_.value_);
}
constexpr const T* dataptr() const {
return detail_::static_addressof(OptionalBase<T>::storage_.value_);
}
constexpr const T& contained_val() const& {
return OptionalBase<T>::storage_.value_;
}
constexpr T&& contained_val() && {
return std::move(OptionalBase<T>::storage_.value_);
}
constexpr T& contained_val() & { return OptionalBase<T>::storage_.value_; }
void clear() noexcept {
if (initialized()) dataptr()->~T();
OptionalBase<T>::init_ = false;
}
template <class... Args>
void initialize(Args&&... args) noexcept(
noexcept(T(std::forward<Args>(args)...))) {
assert(!OptionalBase<T>::init_);
::new (static_cast<void*>(dataptr())) T(std::forward<Args>(args)...);
OptionalBase<T>::init_ = true;
}
template <class U, class... Args>
void initialize(std::initializer_list<U> il, Args&&... args) noexcept(
noexcept(T(il, std::forward<Args>(args)...))) {
assert(!OptionalBase<T>::init_);
::new (static_cast<void*>(dataptr()))
T(il, std::forward<Args>(args)...);
OptionalBase<T>::init_ = true;
}
public:
typedef T value_type;
// 20.5.5.1, constructors
constexpr optional() noexcept : OptionalBase<T>(){};
constexpr optional(nullopt_t) noexcept : OptionalBase<T>(){};
optional(const optional& rhs) : OptionalBase<T>() {
if (rhs.initialized()) {
::new (static_cast<void*>(dataptr())) T(*rhs);
OptionalBase<T>::init_ = true;
}
}
optional(optional&& rhs) noexcept(
std::is_nothrow_move_constructible<T>::value)
: OptionalBase<T>() {
if (rhs.initialized()) {
::new (static_cast<void*>(dataptr())) T(std::move(*rhs));
OptionalBase<T>::init_ = true;
}
}
// see https://github.com/akrzemi1/Optional/issues/16
// and https://en.cppreference.com/w/cpp/utility/optional/optional,
// in constructor 8, the std::optional spec can allow initialization
// of optionals from convertible type U
//
// 8 - implicit move construct from value
template <typename U = T,
TR2_OPTIONAL_REQUIRES(std::is_constructible<T, U&&>::value &&
!std::is_same<typename std::decay<U>::type,
in_place_t>::value &&
!std::is_same<typename std::decay<U>::type,
optional<T>>::value &&
std::is_convertible<U&&, T>)>
constexpr optional(U&& u) : OptionalBase<T>(std::forward<U>(u)) {}
// 8 - explicit move construct from value
template <typename U = T,
TR2_OPTIONAL_REQUIRES(std::is_constructible<T, U&&>::value &&
!std::is_same<typename std::decay<U>::type,
in_place_t>::value &&
!std::is_same<typename std::decay<U>::type,
optional<T>>::value &&
!std::is_convertible<U&&, T>)>
explicit constexpr optional(U&& u) : OptionalBase<T>(std::forward<U>(u)) {}
template <class... Args>
explicit constexpr optional(in_place_t, Args&&... args)
: OptionalBase<T>(in_place_t{}, constexpr_forward<Args>(args)...) {}
template <class U,
class... Args,
TR2_OPTIONAL_REQUIRES(
std::is_constructible<T, std::initializer_list<U>>)>
constexpr explicit optional(in_place_t,
std::initializer_list<U> il,
Args&&... args)
: OptionalBase<T>(in_place_t{}, il, constexpr_forward<Args>(args)...) {}
// 20.5.4.2, Destructor
~optional() = default;
// 20.5.4.3, assignment
optional& operator=(nullopt_t) noexcept {
clear();
return *this;
}
optional& operator=(const optional& rhs) {
if (initialized() == true && rhs.initialized() == false)
clear();
else if (initialized() == false && rhs.initialized() == true)
initialize(*rhs);
else if (initialized() == true && rhs.initialized() == true)
contained_val() = *rhs;
return *this;
}
optional& operator=(optional&& rhs) noexcept(
std::is_nothrow_move_assignable<T>::value&&
std::is_nothrow_move_constructible<T>::value) {
if (initialized() == true && rhs.initialized() == false)
clear();
else if (initialized() == false && rhs.initialized() == true)
initialize(std::move(*rhs));
else if (initialized() == true && rhs.initialized() == true)
contained_val() = std::move(*rhs);
return *this;
}
template <class U = T>
auto operator=(U&& v) -> typename std::enable_if<
std::is_constructible<T, U>::value &&
!std::is_same<typename std::decay<U>::type,
optional<T>>::value &&
(std::is_scalar<T>::value ||
std::is_same<typename std::decay<U>::type, T>::value) &&
std::is_assignable<T&, U>::value,
optional&>::type {
if (initialized()) {
contained_val() = std::forward<U>(v);
} else {
initialize(std::forward<U>(v));
}
return *this;
}
template <class... Args>
void emplace(Args&&... args) {
clear();
initialize(std::forward<Args>(args)...);
}
template <class U, class... Args>
void emplace(std::initializer_list<U> il, Args&&... args) {
clear();
initialize<U, Args...>(il, std::forward<Args>(args)...);
}
// 20.5.4.4, Swap
void swap(optional<T>& rhs) noexcept(
std::is_nothrow_move_constructible<T>::value&& noexcept(
std::swap(std::declval<T&>(), std::declval<T&>()))) {
if (initialized() == true && rhs.initialized() == false) {
rhs.initialize(std::move(**this));
clear();
} else if (initialized() == false && rhs.initialized() == true) {
initialize(std::move(*rhs));
rhs.clear();
} else if (initialized() == true && rhs.initialized() == true) {
using std::swap;
swap(**this, *rhs);
}
}
// 20.5.4.5, Observers
explicit constexpr operator bool() const noexcept { return initialized(); }
constexpr bool has_value() const noexcept { return initialized(); }
TR2_OPTIONAL_HOST_CONSTEXPR T const* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr());
}
TR2_OPTIONAL_HOST_CONSTEXPR T* operator->() {
assert(initialized());
return dataptr();
}
TR2_OPTIONAL_HOST_CONSTEXPR T const& operator*() const& {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T& operator*() & {
assert(initialized());
return contained_val();
}
TR2_OPTIONAL_HOST_CONSTEXPR T&& operator*() && {
assert(initialized());
return constexpr_move(contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T const& value() const& {
return initialized()
? contained_val()
: (throw bad_optional_access("bad optional access"),
contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T& value() & {
return initialized()
? contained_val()
: (throw bad_optional_access("bad optional access"),
contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T&& value() && {
if (!initialized()) throw bad_optional_access("bad optional access");
return std::move(contained_val());
}
template <class V>
constexpr T value_or(V&& v) const& {
return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
}
template <class V>
constexpr T value_or(V&& v) && {
return *this ? constexpr_move(
const_cast<optional<T>&>(*this).contained_val())
: detail_::convert<T>(constexpr_forward<V>(v));
}
// 20.6.3.6, modifiers
void reset() noexcept { clear(); }
};
// XXX: please refrain from using optional<T&>, since it is being against with
// the optional standard in c++ 17, see the debate and the details here:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3406#rationale.refs
// if you need it, consider using optional<std::reference_wrapper<T>> or *
// pointer
//
// we leave the implementation here in case we want to reconsider using it in
// the future if it becomes a definitely necessary case.
template <class T>
class optional<T&> {
// add this assert to prevent user from using optional reference as
// indicated above
static_assert(sizeof(T) == 0,
"optional references is ill-formed, \
consider use optional of a std::reference_wrapper of type T to \
hold a reference if you really need to");
static_assert(!std::is_same<T, nullopt_t>::value, "bad T");
static_assert(!std::is_same<T, in_place_t>::value, "bad T");
T* ref;
public:
// 20.5.5.1, construction/destruction
constexpr optional() noexcept : ref(nullptr) {}
constexpr optional(nullopt_t) noexcept : ref(nullptr) {}
template <typename U = T>
constexpr optional(U& u) noexcept : ref(detail_::static_addressof(u)) {}
template <typename U = T>
optional(U&&) = delete;
constexpr optional(const optional& rhs) noexcept : ref(rhs.ref) {}
explicit constexpr optional(in_place_t, T& v) noexcept
: ref(detail_::static_addressof(v)) {}
explicit optional(in_place_t, T&&) = delete;
~optional() = default;
// 20.5.5.2, mutation
optional& operator=(nullopt_t) noexcept {
ref = nullptr;
return *this;
}
// optional& operator=(const optional& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
// optional& operator=(optional&& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
template <typename U>
auto operator=(U&& rhs) noexcept -> typename std::enable_if<
std::is_same<typename std::decay<U>::type, optional<T&>>::value,
optional&>::type {
ref = rhs.ref;
return *this;
}
template <typename U>
auto operator=(U&& rhs) noexcept -> typename std::enable_if<
!std::is_same<typename std::decay<U>::type, optional<T&>>::value,
optional&>::type = delete;
void emplace(T& v) noexcept { ref = detail_::static_addressof(v); }
void emplace(T&&) = delete;
void swap(optional<T&>& rhs) noexcept { std::swap(ref, rhs.ref); }
// 20.5.5.3, observers
TR2_OPTIONAL_HOST_CONSTEXPR T* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref);
}
TR2_OPTIONAL_HOST_CONSTEXPR T& operator*() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref);
}
constexpr T& value() const {
return ref ? *ref
: (throw bad_optional_access("bad optional access"), *ref);
}
explicit constexpr operator bool() const noexcept { return ref != nullptr; }
constexpr bool has_value() const noexcept { return ref != nullptr; }
template <class V>
constexpr typename std::decay<T>::type value_or(V&& v) const {
return *this ? **this
: detail_::convert<typename std::decay<T>::type>(
constexpr_forward<V>(v));
}
// x.x.x.x, modifiers
void reset() noexcept { ref = nullptr; }
};
template <class T>
class optional<T&&> {
static_assert(sizeof(T) == 0, "optional rvalue references disallowed");
};
// 20.5.8, Relational operators
template <class T>
constexpr bool operator==(const optional<T>& x, const optional<T>& y) {
return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y;
}
template <class T>
constexpr bool operator!=(const optional<T>& x, const optional<T>& y) {
return !(x == y);
}
template <class T>
constexpr bool operator<(const optional<T>& x, const optional<T>& y) {
return (!y) ? false : (!x) ? true : *x < *y;
}
template <class T>
constexpr bool operator>(const optional<T>& x, const optional<T>& y) {
return (y < x);
}
template <class T>
constexpr bool operator<=(const optional<T>& x, const optional<T>& y) {
return !(y < x);
}
template <class T>
constexpr bool operator>=(const optional<T>& x, const optional<T>& y) {
return !(x < y);
}
// 20.5.9, Comparison with nullopt
template <class T>
constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept {
return (!x);
}
template <class T>
constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept {
return (!x);
}
template <class T>
constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
return false;
}
template <class T>
constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept {
return (!x);
}
template <class T>
constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
return true;
}
template <class T>
constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
return false;
}
template <class T>
constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
return true;
}
template <class T>
constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept {
return (!x);
}
// 20.5.10, Comparison with T
template <class T>
constexpr bool operator==(const optional<T>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<T>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<T>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<T>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<T>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<T>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<T>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<T>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<T>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<T>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<T>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<T>& x) {
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T&> with T
template <class T>
constexpr bool operator==(const optional<T&>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<T&>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<T&>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<T&>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<T&>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<T&>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<T&>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<T&>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<T&>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<T&>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<T&>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<T&>& x) {
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T const&> with T
template <class T>
constexpr bool operator==(const optional<const T&>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<const T&>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<const T&>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<const T&>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<const T&>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<const T&>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<const T&>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<const T&>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<const T&>& x) {
return bool(x) ? v >= *x : true;
}
// 20.5.12, Specialized algorithms
template <class T>
void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
template <class T>
constexpr optional<typename std::decay<T>::type> make_optional(T&& v) {
return optional<typename std::decay<T>::type>(constexpr_forward<T>(v));
}
template <class X>
constexpr optional<X&> make_optional(std::reference_wrapper<X> v) {
return optional<X&>(v.get());
}
} // namespace utility
} // namespace open3d
namespace std {
template <typename T>
struct hash<open3d::utility::optional<T>> {
typedef typename hash<T>::result_type result_type;
typedef open3d::utility::optional<T> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? std::hash<T>{}(*arg) : result_type{};
}
};
template <typename T>
struct hash<open3d::utility::optional<T&>> {
typedef typename hash<T>::result_type result_type;
typedef open3d::utility::optional<T&> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? std::hash<T>{}(*arg) : result_type{};
}
};
} // namespace std
#undef TR2_OPTIONAL_REQUIRES
#undef TR2_OPTIONAL_ASSERTED_EXPRESSION
#undef TR2_OPTIONAL_HOST_CONSTEXPR