calibration_tools_v1.0/lidar_driver/include/open3d/ml/contrib/IoUImpl.h

304 lines
11 KiB
C
Raw Normal View History

2025-02-20 10:45:17 +08:00
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2023 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#pragma once
#include <math.h>
#include "open3d/Macro.h"
#include "open3d/core/CUDAUtils.h"
namespace open3d {
namespace ml {
namespace contrib {
constexpr int NMS_BLOCK_SIZE = sizeof(uint64_t) * 8;
constexpr float EPS = static_cast<float>(1e-8);
struct Point {
OPEN3D_HOST_DEVICE Point() {}
OPEN3D_HOST_DEVICE Point(float x, float y) : x_(x), y_(y) {}
OPEN3D_HOST_DEVICE void set(float x, float y) {
x_ = x;
y_ = y;
}
OPEN3D_HOST_DEVICE Point operator+(const Point &b) const {
return Point(x_ + b.x_, y_ + b.y_);
}
OPEN3D_HOST_DEVICE Point operator-(const Point &b) const {
return Point(x_ - b.x_, y_ - b.y_);
}
float x_ = 0.0f;
float y_ = 0.0f;
};
OPEN3D_HOST_DEVICE inline float Cross(const Point &a, const Point &b) {
return a.x_ * b.y_ - a.y_ * b.x_;
}
OPEN3D_HOST_DEVICE inline float Cross(const Point &p1,
const Point &p2,
const Point &p0) {
return (p1.x_ - p0.x_) * (p2.y_ - p0.y_) -
(p2.x_ - p0.x_) * (p1.y_ - p0.y_);
}
OPEN3D_HOST_DEVICE inline int CheckRectCross(const Point &p1,
const Point &p2,
const Point &q1,
const Point &q2) {
int ret = fmin(p1.x_, p2.x_) <= fmax(q1.x_, q2.x_) &&
fmin(q1.x_, q2.x_) <= fmax(p1.x_, p2.x_) &&
fmin(p1.y_, p2.y_) <= fmax(q1.y_, q2.y_) &&
fmin(q1.y_, q2.y_) <= fmax(p1.y_, p2.y_);
return ret;
}
OPEN3D_HOST_DEVICE inline int CheckInBox2D(const float *box, const Point &p) {
// box (5): [x1, y1, x2, y2, angle].
const float MARGIN = static_cast<float>(1e-5);
float center_x = (box[0] + box[2]) / 2;
float center_y = (box[1] + box[3]) / 2;
// Rotate the point in the opposite direction of box.
float angle_cos = cos(-box[4]), angle_sin = sin(-box[4]);
float rot_x = (p.x_ - center_x) * angle_cos +
(p.y_ - center_y) * angle_sin + center_x;
float rot_y = -(p.x_ - center_x) * angle_sin +
(p.y_ - center_y) * angle_cos + center_y;
return (rot_x > box[0] - MARGIN && rot_x < box[2] + MARGIN &&
rot_y > box[1] - MARGIN && rot_y < box[3] + MARGIN);
}
OPEN3D_HOST_DEVICE inline int Intersection(const Point &p1,
const Point &p0,
const Point &q1,
const Point &q0,
Point &ans) {
// Fast exclusion.
if (CheckRectCross(p0, p1, q0, q1) == 0) return 0;
// Check Cross standing
float s1 = Cross(q0, p1, p0);
float s2 = Cross(p1, q1, p0);
float s3 = Cross(p0, q1, q0);
float s4 = Cross(q1, p1, q0);
if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
// Calculate Intersection of two lines.
float s5 = Cross(q1, p1, p0);
if (fabs(s5 - s1) > EPS) {
ans.x_ = (s5 * q0.x_ - s1 * q1.x_) / (s5 - s1);
ans.y_ = (s5 * q0.y_ - s1 * q1.y_) / (s5 - s1);
} else {
float a0 = p0.y_ - p1.y_, b0 = p1.x_ - p0.x_,
c0 = p0.x_ * p1.y_ - p1.x_ * p0.y_;
float a1 = q0.y_ - q1.y_, b1 = q1.x_ - q0.x_,
c1 = q0.x_ * q1.y_ - q1.x_ * q0.y_;
float D = a0 * b1 - a1 * b0;
ans.x_ = (b0 * c1 - b1 * c0) / D;
ans.y_ = (a1 * c0 - a0 * c1) / D;
}
return 1;
}
OPEN3D_HOST_DEVICE inline void RotateAroundCenter(const Point &center,
const float angle_cos,
const float angle_sin,
Point &p) {
float new_x = (p.x_ - center.x_) * angle_cos +
(p.y_ - center.y_) * angle_sin + center.x_;
float new_y = -(p.x_ - center.x_) * angle_sin +
(p.y_ - center.y_) * angle_cos + center.y_;
p.set(new_x, new_y);
}
OPEN3D_HOST_DEVICE inline int PointCmp(const Point &a,
const Point &b,
const Point &center) {
return atan2(a.y_ - center.y_, a.x_ - center.x_) >
atan2(b.y_ - center.y_, b.x_ - center.x_);
}
OPEN3D_HOST_DEVICE inline float BoxOverlap(const float *box_a,
const float *box_b) {
// box_a (5) [x1, y1, x2, y2, angle].
// box_b (5) [x1, y1, x2, y2, angle].
float a_x1 = box_a[0], a_y1 = box_a[1], a_x2 = box_a[2], a_y2 = box_a[3],
a_angle = box_a[4];
float b_x1 = box_b[0], b_y1 = box_b[1], b_x2 = box_b[2], b_y2 = box_b[3],
b_angle = box_b[4];
Point center_a((a_x1 + a_x2) / 2, (a_y1 + a_y2) / 2);
Point center_b((b_x1 + b_x2) / 2, (b_y1 + b_y2) / 2);
Point box_a_corners[5];
box_a_corners[0].set(a_x1, a_y1);
box_a_corners[1].set(a_x2, a_y1);
box_a_corners[2].set(a_x2, a_y2);
box_a_corners[3].set(a_x1, a_y2);
Point box_b_corners[5];
box_b_corners[0].set(b_x1, b_y1);
box_b_corners[1].set(b_x2, b_y1);
box_b_corners[2].set(b_x2, b_y2);
box_b_corners[3].set(b_x1, b_y2);
// Get oriented corners.
float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
for (int k = 0; k < 4; k++) {
RotateAroundCenter(center_a, a_angle_cos, a_angle_sin,
box_a_corners[k]);
RotateAroundCenter(center_b, b_angle_cos, b_angle_sin,
box_b_corners[k]);
}
box_a_corners[4] = box_a_corners[0];
box_b_corners[4] = box_b_corners[0];
// Get Intersection of lines.
Point cross_points[16];
Point poly_center;
int cnt = 0, flag = 0;
poly_center.set(0, 0);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
flag = Intersection(box_a_corners[i + 1], box_a_corners[i],
box_b_corners[j + 1], box_b_corners[j],
cross_points[cnt]);
if (flag) {
poly_center = poly_center + cross_points[cnt];
cnt++;
}
}
}
// Check corners.
for (int k = 0; k < 4; k++) {
if (CheckInBox2D(box_a, box_b_corners[k])) {
poly_center = poly_center + box_b_corners[k];
cross_points[cnt] = box_b_corners[k];
cnt++;
}
if (CheckInBox2D(box_b, box_a_corners[k])) {
poly_center = poly_center + box_a_corners[k];
cross_points[cnt] = box_a_corners[k];
cnt++;
}
}
OPEN3D_ASSERT(cnt != 0 && "Invalid value: cnt==0.");
poly_center.x_ /= cnt;
poly_center.y_ /= cnt;
// Sort the points of polygon.
Point temp;
for (int j = 0; j < cnt - 1; j++) {
for (int i = 0; i < cnt - j - 1; i++) {
if (PointCmp(cross_points[i], cross_points[i + 1], poly_center)) {
temp = cross_points[i];
cross_points[i] = cross_points[i + 1];
cross_points[i + 1] = temp;
}
}
}
// Get the overlap areas.
float area = 0;
for (int k = 0; k < cnt - 1; k++) {
area += Cross(cross_points[k] - cross_points[0],
cross_points[k + 1] - cross_points[0]);
}
return static_cast<float>(fabs(area)) / 2.0f;
}
/// (x_min, z_min, x_max, z_max, y_rotate)
OPEN3D_HOST_DEVICE inline float IoUBev2DWithMinAndMax(
const float *box_a,
const float *box_b,
bool intersection_only = false) {
// params: box_a (5) [x1, y1, x2, y2, angle].
// params: box_b (5) [x1, y1, x2, y2, angle].
float sa = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1]);
float sb = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1]);
float s_overlap = BoxOverlap(box_a, box_b);
if (intersection_only) {
return s_overlap;
} else {
return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
}
}
/// (x_center, z_center, x_size, z_size, y_rotate)
OPEN3D_HOST_DEVICE inline float IoUBev2DWithCenterAndSize(
const float *box_a,
const float *box_b,
bool intersection_only = false) {
float box_a_new[5];
box_a_new[0] = box_a[0] - box_a[2] / 2;
box_a_new[1] = box_a[1] - box_a[3] / 2;
box_a_new[2] = box_a[0] + box_a[2] / 2;
box_a_new[3] = box_a[1] + box_a[3] / 2;
box_a_new[4] = box_a[4];
float box_b_new[5];
box_b_new[0] = box_b[0] - box_b[2] / 2;
box_b_new[1] = box_b[1] - box_b[3] / 2;
box_b_new[2] = box_b[0] + box_b[2] / 2;
box_b_new[3] = box_b[1] + box_b[3] / 2;
box_b_new[4] = box_b[4];
return IoUBev2DWithMinAndMax(box_a_new, box_b_new, intersection_only);
}
/// (x_center, y_max, z_center, x_size, y_size, z_size, y_rotate)
OPEN3D_HOST_DEVICE inline float IoU3DWithCenterAndSize(const float *box_a,
const float *box_b) {
float box_a_2d[5];
box_a_2d[0] = box_a[0];
box_a_2d[1] = box_a[2];
box_a_2d[2] = box_a[3];
box_a_2d[3] = box_a[5];
box_a_2d[4] = box_a[6];
float box_b_2d[5];
box_b_2d[0] = box_b[0];
box_b_2d[1] = box_b[2];
box_b_2d[2] = box_b[3];
box_b_2d[3] = box_b[5];
box_b_2d[4] = box_b[6];
float intersection_2d = IoUBev2DWithCenterAndSize(box_a_2d, box_b_2d, true);
float y_a_min = box_a[1] - box_a[4];
float y_a_max = box_a[1];
float y_b_min = box_b[1] - box_b[4];
float y_b_max = box_b[1];
float iw = (y_a_max < y_b_max ? y_a_max : y_b_max) -
(y_a_min > y_b_min ? y_a_min : y_b_min);
float iou_3d = 0;
if (iw > 0) {
float intersection_3d = intersection_2d * iw;
float volume_a = box_a[3] * box_a[4] * box_a[5];
float volume_b = box_b[3] * box_b[4] * box_b[5];
float union_3d = volume_a + volume_b - intersection_3d;
iou_3d = intersection_3d / union_3d;
}
return iou_3d;
}
} // namespace contrib
} // namespace ml
} // namespace open3d