calibration_tools_v1.0/readme.md

159 lines
4.5 KiB
Markdown
Raw Permalink Normal View History

2025-02-20 10:45:17 +08:00
# 拍照流程
1 执行 capture.py
2 执行完成后 \ssh_tmp 目录下会生成 outpu.png 和 output.ply
3 执行 calibration_mian.py
4 查看执行的消息
# 问题
def detect_marks_roi(im_project, show=False):
masks = []
# ???
offset = 40
# camera_driver
相机驱动代码
## 编译
拷贝到虚拟机编译环境
cmake ..
make -j8
## 执行
将可执行文件 camera_driver 拷贝到目标机器
/root/calibration
chmod 777 ./camera_driver
./camera_driver
执行完成后在当前目录下生成 output.png 文件
# lidar_driver
雷达驱动代码
## 编译
拷贝到虚拟机编译环境
cmake ..
make -j8
## 执行
将可执行文件 lidar_driver 拷贝到目标机器
/root/calibration
chmod 777 ./lidar_driver
./lidar_driver
执行完成后在当前目录下生成 output.ply 文件
# sh 脚本
## 安装
安装前需关闭代理
pip install paramiko scp -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
capture.py
def cameraCap():
def lidarCap():
# samples
数据目录
# error record
## 1
ypr
==>
rpy
## 2
if point_3d[0] > 0: point_3d[0] = point_3d[0] + point_3d[0] / _r * kk
else: point_3d[0] = point_3d[0] - point_3d[0] / _r * kk
==>
if point_3d[0] > 0: point_3d[0] = point_3d[0] + point_3d[0] / _r * kk
else: point_3d[0] = point_3d[0] + point_3d[0] / _r * kk
## 3
if cv2.pointPolygonTest(np.asarray(mark_rois[i]), (x,y), False) > 0:
==>
if cv2.pointPolygonTest(np.asarray(mark_rois[i]), (x,y), False) >= 0:
# 执行条件
## num 4
### z < 3.5 该值设置过大,会增加误差
conf_max_exclude_num = 4
svd.scipy_svd
samples_size = 15
times_per_one_sample = 5
box3
kk = 0.0
### distance_threshold=0.01 ransac_n=100
def correct_mark_cloud(mark_pcd):
plane_model, inliers = mark_pcd.segment_plane(distance_threshold=0.01,
ransac_n=100,
num_iterations=1500)
inlier_cloud = mark_pcd.select_by_index(inliers)
inlier_cloud = inlier_cloud.paint_uniform_color([1.0, 0, 0])
outlier_cloud = mark_pcd.select_by_index(inliers, invert=True)
cv2.findHomography(np.array(pts_3d), np.array(pts_hom), cv2.RANSAC, ransacReprojThreshold)
ransacReprojThreshold = 0.5
## num 5
### z < 3.5 该值设置过大,会增加误差
conf_max_exclude_num = 4
svd.scipy_svd
samples_size = 10
times_per_one_sample = 4
box3
kk = 0.0
def correct_mark_cloud(mark_pcd):
### distance_threshold=0.015 ransac_n=2000
plane_model, inliers = mark_pcd.segment_plane(distance_threshold=0.015,
ransac_n=2000,
num_iterations=1500)
inlier_cloud = mark_pcd.select_by_index(inliers)
inlier_cloud = inlier_cloud.paint_uniform_color([1.0, 0, 0])
outlier_cloud = mark_pcd.select_by_index(inliers, invert=True)
## num 6
### z < 3.5 该值设置过大,会增加误差
conf_max_exclude_num = 4
svd.scipy_svd
### samples_size = 10
### times_per_one_sample = 4
box3
kk = 0.0
def correct_mark_cloud(mark_pcd):
### distance_threshold=0.01 ransac_n=2000
plane_model, inliers = mark_pcd.segment_plane(distance_threshold=0.015,
ransac_n=2000,
num_iterations=1500)
## num 7
### z < 3.5 该值设置过大,会增加误差
conf_max_exclude_num = 4
svd.scipy_svd
### samples_size = 10
### times_per_one_sample = 4
box3
kk = 0.0
def correct_mark_cloud(mark_pcd):
### distance_threshold=0.015 ransac_n=100
plane_model, inliers = mark_pcd.segment_plane(distance_threshold=0.015,
ransac_n=2000,
num_iterations=1500)
## num 8
ransacReprojThreshold = 3.0
## point.json
main
calibration_by_all_samples_points
遍历子文件夹
遍历循环次数
step1_get_aruco_and_lidar_marks_and_conners重写
aurco3d.cal_camera_marks_3d_conners
cloud3d.cal_marks_3d_conners_simple
return aurco_marks_conners, pcd_marks_conners_new
step2_exclude_bad_conners
去除坏点
step3_cal_aruco_and_lidar_marks_rt
_R, _t, _ ,_ = svd.scipy_svd(array_pcd_marks_conners, array_aurco_marks_conners)
# _r, _p, _y = utils.rotation_matrix_to_euler_angles(_R)
_r, _p, _y = utils.rotation_matrix_to_rpy(_R)
calibration_result.append([subdir, str(times), __mean, _t, _rpy, _new_rpy])