image_framework_ymj/include/open3d/3rdparty/math/TVecHelpers.h
2024-12-06 16:25:16 +08:00

619 lines
19 KiB
C++
Executable File

/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MATH_TVECHELPERS_H_
#define MATH_TVECHELPERS_H_
#include <math/compiler.h>
#include <cmath> // for std:: namespace
#include <math.h>
#include <stdint.h>
#include <sys/types.h>
namespace filament {
namespace math {
namespace details {
// -------------------------------------------------------------------------------------
template<typename U>
inline constexpr U min(U a, U b) noexcept {
return a < b ? a : b;
}
template<typename U>
inline constexpr U max(U a, U b) noexcept {
return a > b ? a : b;
}
template<typename T, typename U>
struct arithmetic_result {
using type = decltype(std::declval<T>() + std::declval<U>());
};
template<typename T, typename U>
using arithmetic_result_t = typename arithmetic_result<T, U>::type;
template<typename A, typename B = int, typename C = int, typename D = int>
using enable_if_arithmetic_t = std::enable_if_t<
is_arithmetic<A>::value &&
is_arithmetic<B>::value &&
is_arithmetic<C>::value &&
is_arithmetic<D>::value>;
/*
* No user serviceable parts here.
*
* Don't use this file directly, instead include math/vec{2|3|4}.h
*/
/*
* TVec{Add|Product}Operators implements basic arithmetic and basic compound assignments
* operators on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVec{Add|Product}Operators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template<template<typename T> class VECTOR, typename T>
class TVecAddOperators {
public:
/* compound assignment from a another vector of the same size but different
* element type.
*/
template<typename U>
constexpr VECTOR<T>& operator+=(const VECTOR<U>& v) {
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
for (size_t i = 0; i < lhs.size(); i++) {
lhs[i] += v[i];
}
return lhs;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
constexpr VECTOR<T>& operator+=(U v) {
return operator+=(VECTOR<U>(v));
}
template<typename U>
constexpr VECTOR<T>& operator-=(const VECTOR<U>& v) {
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
for (size_t i = 0; i < lhs.size(); i++) {
lhs[i] -= v[i];
}
return lhs;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
constexpr VECTOR<T>& operator-=(U v) {
return operator-=(VECTOR<U>(v));
}
private:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename U>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator+(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<arithmetic_result_t<T, U>> res(lv);
res += rv;
return res;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator+(const VECTOR<T>& lv, U rv) {
return lv + VECTOR<U>(rv);
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator+(U lv, const VECTOR<T>& rv) {
return VECTOR<U>(lv) + rv;
}
template<typename U>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator-(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<arithmetic_result_t<T, U>> res(lv);
res -= rv;
return res;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator-(const VECTOR<T>& lv, U rv) {
return lv - VECTOR<U>(rv);
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator-(U lv, const VECTOR<T>& rv) {
return VECTOR<U>(lv) - rv;
}
};
template<template<typename T> class VECTOR, typename T>
class TVecProductOperators {
public:
/* compound assignment from a another vector of the same size but different
* element type.
*/
template<typename U>
constexpr VECTOR<T>& operator*=(const VECTOR<U>& v) {
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
for (size_t i = 0; i < lhs.size(); i++) {
lhs[i] *= v[i];
}
return lhs;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
constexpr VECTOR<T>& operator*=(U v) {
return operator*=(VECTOR<U>(v));
}
template<typename U>
constexpr VECTOR<T>& operator/=(const VECTOR<U>& v) {
VECTOR<T>& lhs = static_cast<VECTOR<T>&>(*this);
for (size_t i = 0; i < lhs.size(); i++) {
lhs[i] /= v[i];
}
return lhs;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
constexpr VECTOR<T>& operator/=(U v) {
return operator/=(VECTOR<U>(v));
}
private:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename U>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator*(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<arithmetic_result_t<T, U>> res(lv);
res *= rv;
return res;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator*(const VECTOR<T>& lv, U rv) {
return lv * VECTOR<U>(rv);
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator*(U lv, const VECTOR<T>& rv) {
return VECTOR<U>(lv) * rv;
}
template<typename U>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator/(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<arithmetic_result_t<T, U>> res(lv);
res /= rv;
return res;
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator/(const VECTOR<T>& lv, U rv) {
return lv / VECTOR<U>(rv);
}
template<typename U, typename = enable_if_arithmetic_t<U>>
friend inline constexpr
VECTOR<arithmetic_result_t<T, U>> MATH_PURE operator/(U lv, const VECTOR<T>& rv) {
return VECTOR<U>(lv) / rv;
}
};
/*
* TVecUnaryOperators implements unary operators on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecUnaryOperators<BASE, T> BASE will automatically
* get all the functionality here.
*
* These operators are implemented as friend functions of TVecUnaryOperators<BASE, T>
*/
template<template<typename T> class VECTOR, typename T>
class TVecUnaryOperators {
public:
constexpr VECTOR<T> operator-() const {
VECTOR<T> r{};
VECTOR<T> const& rv(static_cast<VECTOR<T> const&>(*this));
for (size_t i = 0; i < r.size(); i++) {
r[i] = -rv[i];
}
return r;
}
};
/*
* TVecComparisonOperators implements relational/comparison operators
* on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecComparisonOperators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template<template<typename T> class VECTOR, typename T>
class TVecComparisonOperators {
private:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename U>
friend inline constexpr
bool MATH_PURE operator==(const VECTOR<T>& lv, const VECTOR<U>& rv) {
// w/ inlining we end-up with many branches that will pollute the BPU cache
MATH_NOUNROLL
for (size_t i = 0; i < lv.size(); i++) {
if (lv[i] != rv[i]) {
return false;
}
}
return true;
}
template<typename U>
friend inline constexpr
bool MATH_PURE operator!=(const VECTOR<T>& lv, const VECTOR<U>& rv) {
return !operator==(lv, rv);
}
template<typename U>
friend inline constexpr
VECTOR<bool> MATH_PURE equal(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<bool> r{};
for (size_t i = 0; i < lv.size(); i++) {
r[i] = lv[i] == rv[i];
}
return r;
}
template<typename U>
friend inline constexpr
VECTOR<bool> MATH_PURE notEqual(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<bool> r{};
for (size_t i = 0; i < lv.size(); i++) {
r[i] = lv[i] != rv[i];
}
return r;
}
template<typename U>
friend inline constexpr
VECTOR<bool> MATH_PURE lessThan(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<bool> r{};
for (size_t i = 0; i < lv.size(); i++) {
r[i] = lv[i] < rv[i];
}
return r;
}
template<typename U>
friend inline constexpr
VECTOR<bool> MATH_PURE lessThanEqual(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<bool> r{};
for (size_t i = 0; i < lv.size(); i++) {
r[i] = lv[i] <= rv[i];
}
return r;
}
template<typename U>
friend inline constexpr
VECTOR<bool> MATH_PURE greaterThan(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<bool> r;
for (size_t i = 0; i < lv.size(); i++) {
r[i] = lv[i] > rv[i];
}
return r;
}
template<typename U>
friend inline
VECTOR<bool> MATH_PURE greaterThanEqual(const VECTOR<T>& lv, const VECTOR<U>& rv) {
VECTOR<bool> r{};
for (size_t i = 0; i < lv.size(); i++) {
r[i] = lv[i] >= rv[i];
}
return r;
}
};
/*
* TVecFunctions implements functions on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecFunctions<BASE, T> BASE will automatically
* get all the functionality here.
*/
template<template<typename T> class VECTOR, typename T>
class TVecFunctions {
private:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename U>
friend constexpr inline
arithmetic_result_t<T, U> MATH_PURE dot(const VECTOR<T>& lv, const VECTOR<U>& rv) {
arithmetic_result_t<T, U> r{};
for (size_t i = 0; i < lv.size(); i++) {
r += lv[i] * rv[i];
}
return r;
}
friend inline T MATH_PURE norm(const VECTOR<T>& lv) {
return std::sqrt(dot(lv, lv));
}
friend inline T MATH_PURE length(const VECTOR<T>& lv) {
return norm(lv);
}
friend inline constexpr T MATH_PURE norm2(const VECTOR<T>& lv) {
return dot(lv, lv);
}
friend inline constexpr T MATH_PURE length2(const VECTOR<T>& lv) {
return norm2(lv);
}
template<typename U>
friend inline constexpr
arithmetic_result_t<T, U> MATH_PURE distance(const VECTOR<T>& lv, const VECTOR<U>& rv) {
return length(rv - lv);
}
template<typename U>
friend inline constexpr
arithmetic_result_t<T, U> MATH_PURE distance2(const VECTOR<T>& lv, const VECTOR<U>& rv) {
return length2(rv - lv);
}
friend inline VECTOR<T> MATH_PURE normalize(const VECTOR<T>& lv) {
return lv * (T(1) / length(lv));
}
friend inline VECTOR<T> MATH_PURE rcp(VECTOR<T> v) {
return T(1) / v;
}
friend inline constexpr VECTOR<T> MATH_PURE abs(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = v[i] < 0 ? -v[i] : v[i];
}
return v;
}
friend inline VECTOR<T> MATH_PURE floor(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::floor(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE ceil(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::ceil(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE round(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::round(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE inversesqrt(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = T(1) / std::sqrt(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE sqrt(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::sqrt(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE exp(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::exp(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE pow(VECTOR<T> v, T p) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::pow(v[i], p);
}
return v;
}
friend inline VECTOR<T> MATH_PURE pow(T v, VECTOR<T> p) {
for (size_t i = 0; i < p.size(); i++) {
p[i] = std::pow(v, p[i]);
}
return p;
}
friend inline VECTOR<T> MATH_PURE pow(VECTOR<T> v, VECTOR<T> p) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::pow(v[i], p[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE log(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::log(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE log10(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::log10(v[i]);
}
return v;
}
friend inline VECTOR<T> MATH_PURE log2(VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = std::log2(v[i]);
}
return v;
}
friend inline constexpr VECTOR<T> MATH_PURE saturate(const VECTOR<T>& lv) {
return clamp(lv, T(0), T(1));
}
friend inline constexpr VECTOR<T> MATH_PURE clamp(VECTOR<T> v, T min, T max) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = details::min(max, details::max(min, v[i]));
}
return v;
}
friend inline constexpr VECTOR<T> MATH_PURE clamp(VECTOR<T> v, VECTOR<T> min, VECTOR<T> max) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = details::min(max[i], details::max(min[i], v[i]));
}
return v;
}
friend inline constexpr VECTOR<T> MATH_PURE fma(const VECTOR<T>& lv, const VECTOR<T>& rv,
VECTOR<T> a) {
for (size_t i = 0; i < lv.size(); i++) {
a[i] += (lv[i] * rv[i]);
}
return a;
}
friend inline constexpr VECTOR<T> MATH_PURE min(const VECTOR<T>& u, VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = details::min(u[i], v[i]);
}
return v;
}
friend inline constexpr VECTOR<T> MATH_PURE max(const VECTOR<T>& u, VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = details::max(u[i], v[i]);
}
return v;
}
friend inline constexpr T MATH_PURE max(const VECTOR<T>& v) {
T r(v[0]);
for (size_t i = 1; i < v.size(); i++) {
r = max(r, v[i]);
}
return r;
}
friend inline constexpr T MATH_PURE min(const VECTOR<T>& v) {
T r(v[0]);
for (size_t i = 1; i < v.size(); i++) {
r = min(r, v[i]);
}
return r;
}
friend inline constexpr VECTOR<T> MATH_PURE mix(const VECTOR<T>& u, VECTOR<T> v, T a) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = u[i] * (T(1) - a) + v[i] * a;
}
return v;
}
friend inline constexpr VECTOR<T> MATH_PURE smoothstep(T edge0, T edge1, VECTOR<T> v) {
VECTOR<T> t = saturate((v - edge0) / (edge1 - edge0));
return t * t * (T(3) - T(2) * t);
}
friend inline constexpr VECTOR<T> MATH_PURE step(T edge, VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = v[i] < edge ? T(0) : T(1);
}
return v;
}
friend inline constexpr VECTOR<T> MATH_PURE step(VECTOR<T> edge, VECTOR<T> v) {
for (size_t i = 0; i < v.size(); i++) {
v[i] = v[i] < edge[i] ? T(0) : T(1);
}
return v;
}
friend inline constexpr bool MATH_PURE any(const VECTOR<T>& v) {
for (size_t i = 0; i < v.size(); i++) {
if (v[i] != T(0)) return true;
}
return false;
}
friend inline constexpr bool MATH_PURE all(const VECTOR<T>& v) {
bool result = true;
for (size_t i = 0; i < v.size(); i++) {
result &= (v[i] != T(0));
}
return result;
}
};
// -------------------------------------------------------------------------------------
} // namespace details
} // namespace math
} // namespace filament
#endif // MATH_TVECHELPERS_H_