image_framework_ymj/include/opencv4.2/opencv2/gapi/render/render.hpp
2024-12-06 16:25:16 +08:00

471 lines
15 KiB
C++
Executable File

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#ifndef OPENCV_GAPI_RENDER_HPP
#define OPENCV_GAPI_RENDER_HPP
#include <string>
#include <vector>
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/own/scalar.hpp>
/** \defgroup gapi_draw G-API Drawing and composition functionality
* @{
*
* @brief Functions for in-graph drawing.
*
* @note This is a Work in Progress functionality and APIs may
* change in the future releases.
*
* G-API can do some in-graph drawing with a generic operations and a
* set of [rendering primitives](@ref gapi_draw_prims).
* In contrast with traditional OpenCV, in G-API user need to form a
* *rendering list* of primitives to draw. This list can be built
* manually or generated within a graph. This list is passed to
* [special operations or functions](@ref gapi_draw_api) where all
* primitives are interpreted and applied to the image.
*
* For example, in a complex pipeline a list of detected objects
* can be translated in-graph to a list of cv::gapi::wip::draw::Rect
* primitives to highlight those with bounding boxes, or a list of
* detected faces can be translated in-graph to a list of
* cv::gapi::wip::draw::Mosaic primitives to hide sensitive content
* or protect privacy.
*
* Like any other operations, rendering in G-API can be reimplemented
* by different backends. Currently only an OpenCV-based backend is
* available.
*
* In addition to the graph-level operations, there are also regular
* (immediate) OpenCV-like functions are available -- see
* cv::gapi::wip::draw::render(). These functions are just wrappers
* over regular G-API and build the rendering graphs on the fly, so
* take compilation arguments as parameters.
*
* Currently this API is more machine-oriented than human-oriented.
* The main purpose is to translate a set of domain-specific objects
* to a list of primitives to draw. For example, in order to generate
* a picture like this:
*
* ![](modules/gapi/doc/pics/render_example.png)
*
* Rendering list needs to be generated as follows:
*
* @include modules/gapi/samples/draw_example.cpp
*
* @defgroup gapi_draw_prims Drawing primitives
* @defgroup gapi_draw_api Drawing operations and functions
* @}
*/
namespace cv
{
namespace gapi
{
namespace wip
{
namespace draw
{
/**
* @brief This structure specifies which FreeType font to use by FText primitives.
*/
struct freetype_font
{
/*@{*/
std::string path; //!< The path to the font file (.ttf)
/*@{*/
};
//! @addtogroup gapi_draw_prims
//! @{
/**
* @brief This structure represents a text string to draw.
*
* Parameters match cv::putText().
*/
struct Text
{
/**
* @brief Text constructor
*
* @param text_ The text string to be drawn
* @param org_ The bottom-left corner of the text string in the image
* @param ff_ The font type, see #HersheyFonts
* @param fs_ The font scale factor that is multiplied by the font-specific base size
* @param color_ The text color
* @param thick_ The thickness of the lines used to draw a text
* @param lt_ The line type. See #LineTypes
* @param bottom_left_origin_ When true, the image data origin is at the bottom-left corner. Otherwise, it is at the top-left corner
*/
Text(const std::string& text_,
const cv::Point& org_,
int ff_,
double fs_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = cv::LINE_8,
bool bottom_left_origin_ = false) :
text(text_), org(org_), ff(ff_), fs(fs_),
color(color_), thick(thick_), lt(lt_), bottom_left_origin(bottom_left_origin_)
{
}
/*@{*/
std::string text; //!< The text string to be drawn
cv::Point org; //!< The bottom-left corner of the text string in the image
int ff; //!< The font type, see #HersheyFonts
double fs; //!< The font scale factor that is multiplied by the font-specific base size
cv::Scalar color; //!< The text color
int thick; //!< The thickness of the lines used to draw a text
int lt; //!< The line type. See #LineTypes
bool bottom_left_origin; //!< When true, the image data origin is at the bottom-left corner. Otherwise, it is at the top-left corner
/*@{*/
};
/**
* @brief This structure represents a text string to draw using
* FreeType renderer.
*
* If OpenCV is built without FreeType support, this primitive will
* fail at the execution stage.
*/
struct FText
{
/**
* @brief FText constructor
*
* @param text_ The text string to be drawn
* @param org_ The bottom-left corner of the text string in the image
* @param fh_ The height of text
* @param color_ The text color
*/
FText(const std::wstring& text_,
const cv::Point& org_,
int fh_,
const cv::Scalar& color_) :
text(text_), org(org_), fh(fh_), color(color_)
{
}
/*@{*/
std::wstring text; //!< The text string to be drawn
cv::Point org; //!< The bottom-left corner of the text string in the image
int fh; //!< The height of text
cv::Scalar color; //!< The text color
/*@{*/
};
/**
* @brief This structure represents a rectangle to draw.
*
* Parameters match cv::rectangle().
*/
struct Rect
{
/**
* @brief Rect constructor
*
* @param rect_ Coordinates of the rectangle
* @param color_ The bottom-left corner of the text string in the image
* @param thick_ The thickness of lines that make up the rectangle. Negative values, like #FILLED, mean that the function has to draw a filled rectangle
* @param lt_ The type of the line. See #LineTypes
* @param shift_ The number of fractional bits in the point coordinates
*/
Rect(const cv::Rect& rect_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = cv::LINE_8,
int shift_ = 0) :
rect(rect_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
/*@{*/
cv::Rect rect; //!< Coordinates of the rectangle
cv::Scalar color; //!< The rectangle color or brightness (grayscale image)
int thick; //!< The thickness of lines that make up the rectangle. Negative values, like #FILLED, mean that the function has to draw a filled rectangle
int lt; //!< The type of the line. See #LineTypes
int shift; //!< The number of fractional bits in the point coordinates
/*@{*/
};
/**
* @brief This structure represents a circle to draw.
*
* Parameters match cv::circle().
*/
struct Circle
{
/**
* @brief Circle constructor
*
* @param center_ The center of the circle
* @param radius_ The radius of the circle
* @param color_ The color of the circle
* @param thick_ The thickness of the circle outline, if positive. Negative values, like #FILLED, mean that a filled circle is to be drawn
* @param lt_ The Type of the circle boundary. See #LineTypes
* @param shift_ The Number of fractional bits in the coordinates of the center and in the radius value
*/
Circle(const cv::Point& center_,
int radius_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = cv::LINE_8,
int shift_ = 0) :
center(center_), radius(radius_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
/*@{*/
cv::Point center; //!< The center of the circle
int radius; //!< The radius of the circle
cv::Scalar color; //!< The color of the circle
int thick; //!< The thickness of the circle outline, if positive. Negative values, like #FILLED, mean that a filled circle is to be drawn
int lt; //!< The Type of the circle boundary. See #LineTypes
int shift; //!< The Number of fractional bits in the coordinates of the center and in the radius value
/*@{*/
};
/**
* @brief This structure represents a line to draw.
*
* Parameters match cv::line().
*/
struct Line
{
/**
* @brief Line constructor
*
* @param pt1_ The first point of the line segment
* @param pt2_ The second point of the line segment
* @param color_ The line color
* @param thick_ The thickness of line
* @param lt_ The Type of the line. See #LineTypes
* @param shift_ The number of fractional bits in the point coordinates
*/
Line(const cv::Point& pt1_,
const cv::Point& pt2_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = cv::LINE_8,
int shift_ = 0) :
pt1(pt1_), pt2(pt2_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
/*@{*/
cv::Point pt1; //!< The first point of the line segment
cv::Point pt2; //!< The second point of the line segment
cv::Scalar color; //!< The line color
int thick; //!< The thickness of line
int lt; //!< The Type of the line. See #LineTypes
int shift; //!< The number of fractional bits in the point coordinates
/*@{*/
};
/**
* @brief This structure represents a mosaicing operation.
*
* Mosaicing is a very basic method to obfuscate regions in the image.
*/
struct Mosaic
{
/**
* @brief Mosaic constructor
*
* @param mos_ Coordinates of the mosaic
* @param cellSz_ Cell size (same for X, Y). Note: mos size must be multiple of cell size
* @param decim_ Decimation (0 stands for no decimation)
*/
Mosaic(const cv::Rect& mos_,
int cellSz_,
int decim_) :
mos(mos_), cellSz(cellSz_), decim(decim_)
{
}
/*@{*/
cv::Rect mos; //!< Coordinates of the mosaic
int cellSz; //!< Cell size (same for X, Y). Note: mosaic size must be a multiple of cell size
int decim; //!< Decimation (0 stands for no decimation)
/*@{*/
};
/**
* @brief This structure represents an image to draw.
*
* Image is blended on a frame using the specified mask.
*/
struct Image
{
/**
* @brief Mosaic constructor
*
* @param org_ The bottom-left corner of the image
* @param img_ Image to draw
* @param alpha_ Alpha channel for image to draw (same size and number of channels)
*/
Image(const cv::Point& org_,
const cv::Mat& img_,
const cv::Mat& alpha_) :
org(org_), img(img_), alpha(alpha_)
{
}
/*@{*/
cv::Point org; //!< The bottom-left corner of the image
cv::Mat img; //!< Image to draw
cv::Mat alpha; //!< Alpha channel for image to draw (same size and number of channels)
/*@{*/
};
/**
* @brief This structure represents a polygon to draw.
*/
struct Poly
{
/**
* @brief Mosaic constructor
*
* @param points_ Points to connect
* @param color_ The line color
* @param thick_ The thickness of line
* @param lt_ The Type of the line. See #LineTypes
* @param shift_ The number of fractional bits in the point coordinate
*/
Poly(const std::vector<cv::Point>& points_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = cv::LINE_8,
int shift_ = 0) :
points(points_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
/*@{*/
std::vector<cv::Point> points; //!< Points to connect
cv::Scalar color; //!< The line color
int thick; //!< The thickness of line
int lt; //!< The Type of the line. See #LineTypes
int shift; //!< The number of fractional bits in the point coordinate
/*@{*/
};
using Prim = util::variant
< Text
, FText
, Rect
, Circle
, Line
, Mosaic
, Image
, Poly
>;
using Prims = std::vector<Prim>;
//! @} gapi_draw_prims
using GMat2 = std::tuple<cv::GMat,cv::GMat>;
using GMatDesc2 = std::tuple<cv::GMatDesc,cv::GMatDesc>;
//! @addtogroup gapi_draw_api
//! @{
/** @brief The function renders on the input image passed drawing primitivies
@param bgr input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@param prims vector of drawing primitivies
@param args graph compile time parameters
*/
void GAPI_EXPORTS render(cv::Mat& bgr,
const Prims& prims,
cv::GCompileArgs&& args = {});
/** @brief The function renders on two NV12 planes passed drawing primitivies
@param y_plane input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param uv_plane input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@param prims vector of drawing primitivies
@param args graph compile time parameters
*/
void GAPI_EXPORTS render(cv::Mat& y_plane,
cv::Mat& uv_plane,
const Prims& prims,
cv::GCompileArgs&& args = {});
G_TYPED_KERNEL_M(GRenderNV12, <GMat2(cv::GMat,cv::GMat,cv::GArray<wip::draw::Prim>)>, "org.opencv.render.nv12")
{
static GMatDesc2 outMeta(GMatDesc y_plane, GMatDesc uv_plane, GArrayDesc)
{
return std::make_tuple(y_plane, uv_plane);
}
};
G_TYPED_KERNEL(GRenderBGR, <cv::GMat(cv::GMat,cv::GArray<wip::draw::Prim>)>, "org.opencv.render.bgr")
{
static GMatDesc outMeta(GMatDesc bgr, GArrayDesc)
{
return bgr;
}
};
/** @brief Renders on 3 channels input
Output image must be 8-bit unsigned planar 3-channel image
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3
@param prims draw primitives
*/
GAPI_EXPORTS GMat render3ch(const GMat& src, const GArray<Prim>& prims);
/** @brief Renders on two planes
Output y image must be 8-bit unsigned planar 1-channel image @ref CV_8UC1
uv image must be 8-bit unsigned planar 2-channel image @ref CV_8UC2
@param y input image: 8-bit unsigned 1-channel image @ref CV_8UC1
@param uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2
@param prims draw primitives
*/
GAPI_EXPORTS GMat2 renderNV12(const GMat& y,
const GMat& uv,
const GArray<Prim>& prims);
//! @} gapi_draw_api
} // namespace draw
} // namespace wip
namespace render
{
namespace ocv
{
GAPI_EXPORTS cv::gapi::GKernelPackage kernels();
} // namespace ocv
} // namespace render
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::wip::draw::freetype_font>
{
static const char* tag() { return "gapi.freetype_font"; }
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_RENDER_HPP