image_framework_ymj/include/open3d/t/pipelines/registration/RobustKernel.h

81 lines
2.9 KiB
C
Raw Normal View History

2024-12-06 16:25:16 +08:00
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2023 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#pragma once
namespace open3d {
namespace t {
namespace pipelines {
namespace registration {
enum class RobustKernelMethod {
L2Loss = 0,
L1Loss = 1,
HuberLoss = 2,
CauchyLoss = 3,
GMLoss = 4,
TukeyLoss = 5,
GeneralizedLoss = 6,
};
/// \class RobustKernel
///
/// Base class that models a robust kernel for outlier rejection. The virtual
/// function Weight(double residual); must be implemented in derived classes.
/// This method will be only difference between different types of kernels and
/// can be easily extended.
///
/// The kernels implemented so far and the notation has been inspired by the
/// publication: "Analysis of Robust Functions for Registration Algorithms",
/// Philippe Babin et al.
///
/// We obtain the correspondendent weights for each residual and turn the
/// non-linear least-square problem into a IRSL (Iteratively Reweighted
/// Least-Squares) problem. Changing the weight of each residual is equivalent
/// to changing the robust kernel used for outlier rejection.
///
/// The different loss functions will only impact in the weight for each
/// residual during the optimization step. For more information please see also:
/// “Adaptive Robust Kernels for Non-Linear Least Squares Problems”, N.
/// Chebrolu et al.
/// The weight w(r) for a given residual `r` and a given loss function `p(r)` is
/// computed as follow:
/// w(r) = (1 / r) * (dp(r) / dr) , for all r
/// Therefore, the only impact of the choice on the kernel is through its first
/// order derivate.
///
/// GeneralizedLoss Method is an implementation of the following paper:
/// @article{BarronCVPR2019,
/// Author = {Jonathan T. Barron},
/// Title = {A General and Adaptive Robust Loss Function},
/// Journal = {CVPR},
/// Year = {2019}
/// }
class RobustKernel {
public:
explicit RobustKernel(
const RobustKernelMethod type = RobustKernelMethod::L2Loss,
const double scaling_parameter = 1.0,
const double shape_parameter = 1.0)
: type_(type),
scaling_parameter_(scaling_parameter),
shape_parameter_(shape_parameter) {}
public:
/// Loss type.
RobustKernelMethod type_ = RobustKernelMethod::L2Loss;
/// Scaling parameter.
double scaling_parameter_ = 1.0;
/// Shape parameter.
double shape_parameter_ = 1.0;
};
} // namespace registration
} // namespace pipelines
} // namespace t
} // namespace open3d