image_framework_ymj/include/open3d/t/geometry/kernel/ImageImpl.h

351 lines
13 KiB
C
Raw Permalink Normal View History

2024-12-06 16:25:16 +08:00
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2023 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include <limits>
#include "open3d/core/CUDAUtils.h"
#include "open3d/core/Dispatch.h"
#include "open3d/core/Indexer.h"
#include "open3d/core/Tensor.h"
#include "open3d/t/geometry/kernel/GeometryIndexer.h"
#include "open3d/t/geometry/kernel/GeometryMacros.h"
namespace open3d {
namespace t {
namespace geometry {
namespace kernel {
namespace image {
#ifndef __CUDACC__
using std::isinf;
using std::isnan;
#endif
#ifdef __CUDACC__
void ToCUDA
#else
void ToCPU
#endif
(const core::Tensor& src,
core::Tensor& dst,
double scale,
double offset) {
core::Indexer indexer({src}, dst, core::DtypePolicy::NONE);
// elem_t: corresponds to dst_dtype.
// scalar_t: corresponds to src_dtype.
// calc_t: calculation type for intermediate results.
#define LINEAR_SATURATE(elem_t, calc_t) \
elem_t limits[2] = {std::numeric_limits<elem_t>::min(), \
std::numeric_limits<elem_t>::max()}; \
calc_t c_scale = static_cast<calc_t>(scale); \
calc_t c_offset = static_cast<calc_t>(offset); \
DISPATCH_DTYPE_TO_TEMPLATE(src.GetDtype(), [&]() { \
core::ParallelFor( \
src.GetDevice(), indexer.NumWorkloads(), \
[=] OPEN3D_DEVICE(int64_t workload_idx) { \
auto src_ptr = \
indexer.GetInputPtr<scalar_t>(0, workload_idx); \
auto dst_ptr = indexer.GetOutputPtr<elem_t>(workload_idx); \
calc_t out = static_cast<calc_t>(*src_ptr) * c_scale + \
c_offset; \
out = out < limits[0] ? limits[0] : out; \
out = out > limits[1] ? limits[1] : out; \
*dst_ptr = static_cast<elem_t>(out); \
}); \
});
core::Dtype dst_dtype = dst.GetDtype();
if (dst_dtype == core::Float32) {
LINEAR_SATURATE(float, float)
} else if (dst_dtype == core::Float64) {
LINEAR_SATURATE(double, double)
} else if (dst_dtype == core::Int8) {
LINEAR_SATURATE(int8_t, float)
} else if (dst_dtype == core::UInt8) {
LINEAR_SATURATE(uint8_t, float)
} else if (dst_dtype == core::Int16) {
LINEAR_SATURATE(int16_t, float)
} else if (dst_dtype == core::UInt16) {
LINEAR_SATURATE(uint16_t, float)
} else if (dst_dtype == core::Int32) {
LINEAR_SATURATE(int32_t, double)
} else if (dst_dtype == core::UInt32) {
LINEAR_SATURATE(uint32_t, double)
} else if (dst_dtype == core::Int64) {
LINEAR_SATURATE(int64_t, double)
} else if (dst_dtype == core::UInt64) {
LINEAR_SATURATE(uint64_t, double)
}
#undef LINEAR_SATURATE
}
#ifdef __CUDACC__
void ClipTransformCUDA
#else
void ClipTransformCPU
#endif
(const core::Tensor& src,
core::Tensor& dst,
float scale,
float min_value,
float max_value,
float clip_fill) {
NDArrayIndexer src_indexer(src, 2);
NDArrayIndexer dst_indexer(dst, 2);
int64_t rows = src.GetShape(0);
int64_t cols = dst.GetShape(1);
int64_t n = rows * cols;
DISPATCH_DTYPE_TO_TEMPLATE(src.GetDtype(), [&]() {
core::ParallelFor(src.GetDevice(), n,
[=] OPEN3D_DEVICE(int64_t workload_idx) {
int64_t y = workload_idx / cols;
int64_t x = workload_idx % cols;
float in = static_cast<float>(
*src_indexer.GetDataPtr<scalar_t>(x, y));
float out = in / scale;
out = out <= min_value ? clip_fill : out;
out = out >= max_value ? clip_fill : out;
*dst_indexer.GetDataPtr<float>(x, y) = out;
});
});
}
// Reimplementation of the reference:
// https://github.com/mp3guy/ICPCUDA/blob/master/Cuda/pyrdown.cu#L41
#ifdef __CUDACC__
void PyrDownDepthCUDA
#else
void PyrDownDepthCPU
#endif
(const core::Tensor& src,
core::Tensor& dst,
float depth_diff,
float invalid_fill) {
NDArrayIndexer src_indexer(src, 2);
NDArrayIndexer dst_indexer(dst, 2);
int rows = src_indexer.GetShape(0);
int cols = src_indexer.GetShape(1);
int rows_down = dst_indexer.GetShape(0);
int cols_down = dst_indexer.GetShape(1);
int n = rows_down * cols_down;
// Gaussian filter window size
// Gaussian filter weights
const int gkernel_size = 5;
const int gkernel_size_2 = gkernel_size / 2;
const float gweights[3] = {0.375f, 0.25f, 0.0625f};
#ifndef __CUDACC__
using std::abs;
using std::max;
using std::min;
#endif
core::ParallelFor(
src.GetDevice(), n, [=] OPEN3D_DEVICE(int64_t workload_idx) {
int y = workload_idx / cols_down;
int x = workload_idx % cols_down;
int y_src = 2 * y;
int x_src = 2 * x;
float v_center = *src_indexer.GetDataPtr<float>(x_src, y_src);
if (v_center == invalid_fill) {
*dst_indexer.GetDataPtr<float>(x, y) = invalid_fill;
return;
}
int x_min = max(0, x_src - gkernel_size_2);
int y_min = max(0, y_src - gkernel_size_2);
int x_max = min(cols - 1, x_src + gkernel_size_2);
int y_max = min(rows - 1, y_src + gkernel_size_2);
float v_sum = 0;
float w_sum = 0;
for (int yk = y_min; yk <= y_max; ++yk) {
for (int xk = x_min; xk <= x_max; ++xk) {
float v = *src_indexer.GetDataPtr<float>(xk, yk);
int dy = abs(yk - y_src);
int dx = abs(xk - x_src);
if (v != invalid_fill &&
abs(v - v_center) < depth_diff) {
float w = gweights[dx] * gweights[dy];
v_sum += w * v;
w_sum += w;
}
}
}
*dst_indexer.GetDataPtr<float>(x, y) =
w_sum == 0 ? invalid_fill : v_sum / w_sum;
});
}
#ifdef __CUDACC__
void CreateVertexMapCUDA
#else
void CreateVertexMapCPU
#endif
(const core::Tensor& src,
core::Tensor& dst,
const core::Tensor& intrinsics,
float invalid_fill) {
NDArrayIndexer src_indexer(src, 2);
NDArrayIndexer dst_indexer(dst, 2);
TransformIndexer ti(intrinsics, core::Tensor::Eye(4, core::Float64,
core::Device("CPU:0")));
int64_t rows = src.GetShape(0);
int64_t cols = src.GetShape(1);
int64_t n = rows * cols;
#ifndef __CUDACC__
using std::isinf;
using std::isnan;
#endif
core::ParallelFor(
src.GetDevice(), n, [=] OPEN3D_DEVICE(int64_t workload_idx) {
auto is_invalid = [invalid_fill] OPEN3D_DEVICE(float v) {
if (isinf(invalid_fill)) return isinf(v);
if (isnan(invalid_fill)) return isnan(v);
return v == invalid_fill;
};
int64_t y = workload_idx / cols;
int64_t x = workload_idx % cols;
float d = *src_indexer.GetDataPtr<float>(x, y);
float* vertex = dst_indexer.GetDataPtr<float>(x, y);
if (!is_invalid(d)) {
ti.Unproject(static_cast<float>(x), static_cast<float>(y),
d, vertex + 0, vertex + 1, vertex + 2);
} else {
vertex[0] = invalid_fill;
vertex[1] = invalid_fill;
vertex[2] = invalid_fill;
}
});
}
#ifdef __CUDACC__
void CreateNormalMapCUDA
#else
void CreateNormalMapCPU
#endif
(const core::Tensor& src, core::Tensor& dst, float invalid_fill) {
NDArrayIndexer src_indexer(src, 2);
NDArrayIndexer dst_indexer(dst, 2);
int64_t rows = src_indexer.GetShape(0);
int64_t cols = src_indexer.GetShape(1);
int64_t n = rows * cols;
core::ParallelFor(
src.GetDevice(), n, [=] OPEN3D_DEVICE(int64_t workload_idx) {
int64_t y = workload_idx / cols;
int64_t x = workload_idx % cols;
float* normal = dst_indexer.GetDataPtr<float>(x, y);
if (y < rows - 1 && x < cols - 1) {
float* v00 = src_indexer.GetDataPtr<float>(x, y);
float* v10 = src_indexer.GetDataPtr<float>(x + 1, y);
float* v01 = src_indexer.GetDataPtr<float>(x, y + 1);
if ((v00[0] == invalid_fill && v00[1] == invalid_fill &&
v00[2] == invalid_fill) ||
(v01[0] == invalid_fill && v01[1] == invalid_fill &&
v01[2] == invalid_fill) ||
(v10[0] == invalid_fill && v10[1] == invalid_fill &&
v10[2] == invalid_fill)) {
normal[0] = invalid_fill;
normal[1] = invalid_fill;
normal[2] = invalid_fill;
return;
}
float dx0 = v01[0] - v00[0];
float dy0 = v01[1] - v00[1];
float dz0 = v01[2] - v00[2];
float dx1 = v10[0] - v00[0];
float dy1 = v10[1] - v00[1];
float dz1 = v10[2] - v00[2];
normal[0] = dy0 * dz1 - dz0 * dy1;
normal[1] = dz0 * dx1 - dx0 * dz1;
normal[2] = dx0 * dy1 - dy0 * dx1;
constexpr float EPSILON = 1e-5f;
float normal_norm =
sqrt(normal[0] * normal[0] + normal[1] * normal[1] +
normal[2] * normal[2]);
normal_norm = std::max(normal_norm, EPSILON);
normal[0] /= normal_norm;
normal[1] /= normal_norm;
normal[2] /= normal_norm;
} else {
normal[0] = invalid_fill;
normal[1] = invalid_fill;
normal[2] = invalid_fill;
}
});
}
#ifdef __CUDACC__
void ColorizeDepthCUDA
#else
void ColorizeDepthCPU
#endif
(const core::Tensor& src,
core::Tensor& dst,
float scale,
float min_value,
float max_value) {
NDArrayIndexer src_indexer(src, 2);
NDArrayIndexer dst_indexer(dst, 2);
int64_t rows = src.GetShape(0);
int64_t cols = dst.GetShape(1);
int64_t n = rows * cols;
float inv_interval = 255.0f / (max_value - min_value);
DISPATCH_DTYPE_TO_TEMPLATE(src.GetDtype(), [&]() {
core::ParallelFor(
src.GetDevice(), n, [=] OPEN3D_DEVICE(int64_t workload_idx) {
int64_t y = workload_idx / cols;
int64_t x = workload_idx % cols;
float in = static_cast<float>(
*src_indexer.GetDataPtr<scalar_t>(x, y));
float out = in / scale;
out = out <= min_value ? min_value : out;
out = out >= max_value ? max_value : out;
int idx =
static_cast<int>(inv_interval * (out - min_value));
uint8_t* out_ptr = dst_indexer.GetDataPtr<uint8_t>(x, y);
out_ptr[0] = turbo_srgb_bytes[idx][0];
out_ptr[1] = turbo_srgb_bytes[idx][1];
out_ptr[2] = turbo_srgb_bytes[idx][2];
});
});
}
} // namespace image
} // namespace kernel
} // namespace geometry
} // namespace t
} // namespace open3d